scholarly journals Landing facilities for processing of cultivated seaweed biomass: a Norwegian perspective with strategic considerations for the European seaweed industry

Author(s):  
Pierrick Stévant ◽  
Céline Rebours

AbstractThe production of marine biomass based on seaweed cultivation is growing rapidly in Europe. One of the major challenges for the development of this new industry is associated with processing of the wet biomass harvested from cultivation sites. Efficient methods for the stabilization (i.e. procedures to maintain the integrity and safety of the biomass) and further processing of large quantities of harvested raw material are still lacking as the development of adapted technologies is often limited by significant capital investment. This study investigates the concept of landing facilities for the processing of cultivated seaweed biomass (LFCS) shared among various stakeholders as a practical mean to overcome these challenges. Qualitative data were collected during interviews with relevant stakeholders from Norway and abroad (including seaweed cultivators, technology suppliers and industrial buyers of biomass) to describe the current commercial applications for cultivated seaweeds as well as the methods used for the stabilization and processing of the biomass. This study showed that LFCS can give stakeholders the opportunity to share the costs (investment, operational), thus lowering the financial threshold for establishing efficient strategies for processing large quantities of cultivated seaweed biomass. It was identified that such a structure will increase the synergy among industrial actors along the entire value chain to stimulate innovation and facilitate the production of high-quality products from seaweeds to relevant markets (food, animal feed, nutraceuticals and cosmetics). It can also lead to a higher degree of specialization in this new industry. These premises will contribute to increase the profitability of the emerging European seaweed sector. Identification of the appropriate stabilization processes for large-scale production, definition of the role of LFCS in the seaweed value chain as well as the mode of engagement of the stakeholders in such structure are thus acknowledged as key considerations to define during the planning phase.

2021 ◽  
Vol 6 (3) ◽  
pp. 019-028
Author(s):  
Oruonye ED ◽  
Ahmed YM ◽  
Joseph MOruonye ED

Nigeria is the largest cassava producing country in the world. Taraba state is one of the top 5 leading producers of cassava in Nigeria. Despite its large scale production of the crop, most existing literatures covers cassava production in the southern forest belt of the country, with little or not much on cassava production in Taraba State. It is against this background that the study examines cassava value chain and food security issues in Nigeria using the case of International Fund for Agricultural Development (IFAD) value chain development programme (VCDP) intervention in Taraba State Nigeria. Cassava is generally produced as food crop and industrial raw material for starch, high quality cassava floor, ethanol, cassava chips and pellets. A number of constraints in the cassava value chain emerged which were not initially foreseen. An innovation fund was approved in 2012 to allow the programme to respond to these challenges. Value addition to local cassava is essential, to reduce the bulkiness of fresh tuber, minimize post-harvest loses, increase shelf life, stabilize product prices and facilitate easy transportation from farm to local or urban markets. The data for this study were generated through secondary (desk) research and archival materials. The findings of the study reveals that IFAD-VCDP intervention only covers 5 LGAs in Taraba State (Takum, Gassol, Wukari, Ardo-kola and Karim-Lamido LGAs). Towards the end of the year 2020, 3 additional LGAs were added which include Bali, Jalingo and Donga LGA. The programme was able to carry out sensitization of stakeholders and training of about 30 leaders of farmer organizations (FOs) in each of the selected LGAs. The programme trained farmers on how to develop appropriate and usable business plan, financial management and record keeping systems. About 25 participating farmer groups were able to access credit from financial institutions, 24 groups received inputs in cassava production. Some of the challenges include inadequate funding, lack of adequate support to the marketing component, inadequate clean water and lack of improved mechanized cassava processing equipment. Based on the findings, the study recommended increase support for cassava marketers, financial linkages and establishment of more cassava processing centres.


Author(s):  
Asep Bayu Dani Nandiyanto ◽  
Nissa Nur Azizah ◽  
Gabriela Chelvina Santiuly Girsang

Corncob is usually disposed of directly as waste, creating problems in the environment, while it can be converted into valuable materials. This research aimed to evaluate the literature review on briquette production from agricultural waste (using non-binder and cold press with a binder) and the current works on techno-economic analysis, to propose an optimal design for the production of briquette from corncob waste, and to perform a techno-economic analysis based on the selected optimal processing method. The engineering perspective based on stoichiometry and mass balance showed the potential corncob briquette manufacture in both home and large scales due to the possible use of inexpensive and commercially available equipment and raw materials. The economic perspective [based on several economic evaluation factors (i.e., gross profit margin, payback period, break-even point, cumulative net present value, return of investment, internal rate return, and profitability index) under ideal and non-ideal conditions by considering internal (i.e., sales, raw materials, utilities, and variable cost) and external aspects (i.e., tax)] confirmed the prospective development of the project in the large-scale production with a lifetime of more than 18 years. The main issue in the project is the raw material (i.e. tapioca flour), giving the most impact on the project’s feasibility. Even in severe conditions, the project is feasible. The great endurance was also confirmed in the case of a higher tax rate. This study demonstrates the importance of producing corncob-based briquettes for improving the economic value and giving alternatives for problem solvers in the utilization of agricultural waste.


Author(s):  
Daniel Sena MARINS ◽  
Marcos Vinícius Oliveira CARDOSO ◽  
Mara Eliza SANTOS ◽  
Jeferson MASSINHAN

Demand for diversified biodiesel feedstocks is high and increasing, but few are viable for large-scale production, and many of those selected compete with other sectors of the chemical industry. To improve energy and environmental sustainability, fatty acids from waste oils that are improperly disposed of and pollute the environment can be used for transesterification reactions. However, they need treatment to achieve high conversion rates. In this context, the aim of this work was to perform and analyze the treatment of residual frying oil with the evaporation and entrainment process, aiming at its use as raw material to obtain biodiesel (methyl esters) by a transesterification reaction. The physicochemical properties of the residual oil after treatment were characterized by moisture content, pH and the acidity, saponification, iodine, and peroxide index. The conversion rate of the residual oil to methyl esters was determined by 1H NMR analysis. After the treatment, the method of analysis of variance showed that the oil obtained a significant reduction of the saponification, iodine, peroxide and acidity indexes, being the acidity reduced from 9.36 to 7.85 mg KOH g-1. The moisture content of 0.733% and elevation of pH to 8.0. The conversion rate of fatty acid biodiesel of residual oil was 79.3 %, lower value of standards norms (ASTM, 2005; EN, 2008; ANP, 2014), showing that the assigned methodology for frying residual oil is inefficient in biodiesel production.


2015 ◽  
Vol 31 (5) ◽  
Author(s):  
Zeeshan Nawaz

AbstractThe dehydrogenation of light alkanes, especially propane and butane, is widely exploited for the large-scale production of corresponding olefins. The industrial application of the direct dehydrogenation of light alkanes is limited due to reaction and thermodynamic constraints. The dehydrogenation of light hydrocarbons involves the breaking of two carbon–hydrogen bonds with the simultaneous formation of a hydrogen and carbon-carbon double bond selectively. It may appear to be simple, but their endothermic nature and selectivity control at higher temperature is difficult. The same technologies with minor changes in process and catalyst were used for the production of both propane and isobutane dehydrogenation. The economic analysis of the available technologies based on the specific consumption of feedstock, operational ease, and capital investment indicates an internal rate of return ~25%. The attractiveness of light alkane dehydrogenation is largely dependent on the difference in feedstock and the price of olefins produced. The available technologies and how they manage reaction constraints at commercial scale have been compared. The possible solution for improvement is by focusing on catalyst improvements and the unique design of reactors.


Author(s):  
Sylvia Fasse ◽  
Jarmo Alarinta ◽  
Björn Frahm ◽  
Gun Wirtanen

The purpose of bovine colostrum, being the milk secreted by a cow after giving birth, is to transfer passive immunity to the calf. The calves have an insufficient immune system as they lack immunoglobulins (Igs). Subsequently, the supply of good quality bovine colostrum is obligatory. The quality of colostrum is classified by low bacterial counts and adequate Ig concentrations. Bacterial contamination can contain a variety of human pathogens or high counts of spoilage bacteria, which becomes more challenging with emerging use of bovine colostrum as food and food supplements. There is also a growing risk for the spread of zoonotic diseases originating from bovines. For this reason, processing based on heat treatment or other feasible techniques are required. This review provides an overview of literature on the microbial quality of bovine colostrum and processing methods to improve its microbial quality and keep its nutritional values as food. The highlights of this review are: high quality colostrum is a valuable raw material in food products and supplements, the microbial safety of bovine colostrum is increased using appropriate processing, suitable effective heat-treatment, which does not destroy the high nutrition value of colostrum, the heat treatment processes are cost-effective compared to other methods, and heat treatment can be performed in both small- and large-scale production


Revista CERES ◽  
2014 ◽  
Vol 61 (6) ◽  
pp. 983-988 ◽  
Author(s):  
Vivian Pupo de Oliveira Machado ◽  
Ana Claudia Pacheco ◽  
Marcia Eugenia Amaral Carvalho

The production of medicinal plants as raw material for industry must associate quality with biomass formation and, with this purpose, the application of plant growth regulators has been studied in these crops. The objective of this study was to evaluate the effect of a biostimulant on growth, inflorescence production and flavonoid content in marigold. The experiment was conducted in a greenhouse and the treatments consisted of increasing doses of the biostimulant (0, 3, 6, 9, 12 and 15 mL L-1) applied by foliar spraying in ten consecutive applications. The experiment was arranged in a completely randomized design, with six treatments and ten repetitions. The number of leaves and flowerheads and dry matter of roots increased linearly with increasing doses of the growth promoter, with 20%, 36.97% and 97.28% increases, respectively, compared with the control. The total dry mass and shoot dry mass showed maximum values at the highest dose tested of 15 mL L-1 (with increases of 40.09% and 46.30%, respectively). Plant height and flavonoid content reached the highest values at a dose of 6 mL L-1. The biostimulant promoted the development of marigold and positively influenced the synthesis of the secondary compound of medicinal interest. Among the tested doses, the application of rates between 6 and 9 mL L-1 of the biostimulant is recommended for more efficient large-scale production of marigold.


Author(s):  
Daniel Sena Marins ◽  
Marcos Vinícius Oliveira Cardoso ◽  
Mara Eliza Santos ◽  
Jeferson Massinhan

Demand for diversified biodiesel feedstocks is high and increasing, but few are viable for large-scale production, and many of those selected compete with other sectors of the chemical industry. To improve energy and environmental sustainability, fatty acids from waste oils that are improperly disposed of and pollute the environment can be used for transesterification reactions. However, they need treatment to achieve high conversion rates. In this context, the aim of this work was to perform and analyze the treatment of residual frying oil with the evaporation and entrainment process, aiming at its use as raw material to obtain biodiesel (methyl esters) by a transesterification reaction. The physicochemical properties of the residual oil after treatment were characterized by moisture content, pH and the acidity, saponification, iodine, and peroxide index. The conversion rate of the residual oil to methyl esters was determined by 1H NMR analysis. After the treatment, the method of analysis of variance showed that the oil obtained a significant reduction of the saponification, iodine, peroxide and acidity indexes, being the acidity reduced from 9.36 to 7.85 mg KOH g-1. The moisture content of 0.733 % and elevation of pH to 8.0. The conversion rate of fatty acid biodiesel of residual oil was 79.3 %, lower value of standards norms (ASTM, 2005; EN, 2008; ANP, 2014), showing that the assigned methodology for frying residual oil is inefficient in biodiesel production


2021 ◽  
Vol 75 (9) ◽  
pp. 752-756
Author(s):  
Jakob J. Mueller ◽  
Hans H. Wenk

Biosurfactants are surface-active molecules, developed by nature through evolution and naturally produced by different microorganisms. The most prominent examples are rhamnolipids and sophorolipids, molecules which contain hydrophilic sugar head groups and hydrophobic alkyl residues leading to an amphiphilic behavior with unique properties. Recent developments in the field of biotechnology enable the large-scale production of these biological molecules. The raw material basis is 100% renewable since sugars and oils are used as major raw materials. Additionally, biosurfactants are fully biodegradable, which allows the path back into the natural cycles. In comparison to established standard surfactants like SLES/SLS (sodium laureth (ether) sulfates) or betaines, rhamnolipids are much milder and, at the same time, show similar or even better performance in household or personal care applications. Foam behavior, solubilization and cleaning effectiveness are examples where these natural substances give excellent results compared to the synthetic benchmarks. The commercialization of biosurfactants at industrial scale now offers alternatives to consumers seeking sustainable solutions, without compromising performance. Biosurfactants combine both and set a new standard for surfactant applications.


2019 ◽  
Vol 98 (1) ◽  
Author(s):  
Jian Wang ◽  
Yajing Liu ◽  
Yongzhi Yang ◽  
Chengling Bao ◽  
Yunhe Cao

Abstract An acidic thermostable xylanase (AT-xynA) which was stable at low pH and high temperature was considered to have great potential in animal feed. For large-scale production, AT-xynA activity was enhanced about 1-fold in Pichia pastoris by constructing a double-copy expression strain in this study. Furthermore, impacts of different AT-xynA levels on growth performance, nutrient digestibility, short-chain fatty acids, and bacterial community in weaned piglets were determined. Compared with the control group, ADFI and ADG were higher for the pigs fed 4,000 or 6,000 U/kg AT-xynA (P < 0.05). AT-xynA supplementation also significantly increased the digestibility of OM, GE, and DM (P < 0.05). AT-xynA supplementation increased the concentrations of acetate in ileal (P < 0.01) and cecal digesta (P < 0.05). Isobutyrate (P < 0.05) and valerate (P < 0.05) concentrations in colonic digesta also significantly increased compared with the control group. AT-xynA supplementation increased the abundance of Lactobacillus in the ileal, cecal, and colonic digesta of weaned piglets (P < 0.05). AT-xynA alleviated anti-nutritional effects of nonstarch polysaccharides (NSP) by preventing the growth of Pateurella and Leptotrichia in the ileum (P < 0.05). AT-xynA increased the abundance of NSP-degrading bacteria, such as Ruminococcaceae, Prevotella in the cecum and colon (P < 0.05). In summary, AT-xynA addition could improve the growth performance of weaned piglets by altering gut microbiota.


2020 ◽  
Vol 20 (10) ◽  
pp. 6525-6531
Author(s):  
Majid Mostaghelchi ◽  
Jani Kotakoski ◽  
Christian Rentenberger ◽  
Christian L. Lengauer

The wide range of actual and potential applications of nanoparticles, highlight the necessity of a reliable production method for both quality and quantity of the products. Mechanical attrition is one of the first well-known techniques used to produce nanoparticles. However, these approaches have been restricted to produce uniform particles below the critical size of 15 nm because of the attrition balance limit. This paper introduces the magnetite–silicate raw material of a Kiruna-type ore deposit as a novel precursor, which enables the production of small iron oxide nanoparticles below the critical size by mechanical attrition. X-ray fluorescence (XRF), powder X-ray diffractometry (pXRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used for characterization of the precursor and obtained nanoparticles. The results indicate that the particles with a mean diameter of 10.7(2.7) nm consist of mainly less than one crystallite. The significant size reduction below the attrition balance limit can be attributed to the quartz content of the raw material, which operated as supporting micro-balls for transferring the energy during the milling process.


Sign in / Sign up

Export Citation Format

Share Document