scholarly journals Evaluation of the Impact of Technology Scaling on Delay Testing for Low-Cost AVS

2019 ◽  
Vol 35 (3) ◽  
pp. 303-315
Author(s):  
Mahroo Zandrahimi ◽  
Philippe Debaud ◽  
Armand Castillejo ◽  
Zaid Al-Ars
2002 ◽  
Vol 716 ◽  
Author(s):  
Nihar R. Mohapatra ◽  
Madhav P. Desai ◽  
Siva G. Narendra ◽  
V. Ramgopal Rao

AbstractThe impact of technology scaling on the MOS transistor performance is studied over a wide range of dielectric permittivities using two-dimensional (2-D) device simulations. It is found that the device short channel performance is degraded with increase in the dielectric permittivity due to an increase in dielectric physical thickness to channel length ratio. For Kgate greater than Ksi, we observe a substantial coupling between source and drain regions through the gate dielectric. We provide extensive 2-D device simulation results to prove this point. Since much of the coupling between source and drain occurs through the gate dielectric, it is observed that the overlap length is an important parameter for optimizing DC performance in the short channel MOS transistors. The effect of stacked gate dielectric and spacer dielectric on the MOS transistor performance is also studied to substantiate the above observations.


2009 ◽  
Vol 48 (1) ◽  
pp. 011208
Author(s):  
Eiji Morifuji ◽  
Hideki Kimijima ◽  
Kenji Kojima ◽  
Masaaki Iwai ◽  
Fumitomo Matsuoka

2015 ◽  
Vol 24 (06) ◽  
pp. 1550077
Author(s):  
Borisav Jovanović ◽  
Milunka Damnjanović ◽  
Predrag Petković ◽  
Vančo Litovski

Microcontrollers represent unavoidable parts of state-of-the-art system-on-chips (SoCs) and they are widely embedded as IP blocks. This paper describes design steps and the application of available low-power techniques, to the design of a microcontroller IP core with 8051 instruction set, based on a prescribed standard cell libraries. Choice of the technology node and the cell library supplier is a design challenge that was considered and conclusions reached. The necessary steps of microcontroller design flow are presented which enable power reduction at several abstraction levels. An optimal microcontroller was designed to be embedded in various SoCs. The goal was to get energy-efficient microcontroller operation in applications which don't require intensive data processing. The impact of technology scaling on microcontroller energy efficiency is considered by comparison of the results obtained from implementations in three standard cell technologies. Moreover, power dissipation models are created which allow for microcontroller's power estimation in low throughput sensors networks applications.


Sign in / Sign up

Export Citation Format

Share Document