Flexographic printing of nanoparticulate tin-doped indium oxide inks on PET foils and glass substrates

2016 ◽  
Vol 51 (9) ◽  
pp. 4588-4600 ◽  
Author(s):  
Moritz Wegener ◽  
Dieter Spiehl ◽  
Hans Martin Sauer ◽  
Florian Mikschl ◽  
Xinxin Liu ◽  
...  
2019 ◽  
Vol 969 ◽  
pp. 260-265
Author(s):  
Robbi Vivek Vardhan ◽  
G. Manjunath ◽  
Saumen Mandal

In this work, solution combustion processed titanium, zinc co-doped indium oxide high transparent semiconducting thin films were demonstrated at annealing temperatures of 300, 350 °C. In the process, low-temperature combustion at 123 °C was verified through thermogravimetric analysis; acetylacetone, 2-methoxyethanol served as fuel and solvent respectively in the redox reaction. Indium titanium zinc oxide (ITiZO) films were developed on glass substrates by spin coating followed by annealing at different temperatures. ITiZO films, powder exhibited high crystallinity exactly matching with indium oxide peaks without forming secondary phases. But, the presence of In, Ti, Zn, and O is clearly visible on film through energy dispersive spectroscopy. Films had transparency more than 85% in the visible range with optical band gap ranging 3.8-3.9 eV. These ITiZO films with smooth and low roughness ranging 0.46-0.5 nm, can have a potential application as an active layer in transparent thin film transistors and optoelectronic devices.


RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22487-22490
Author(s):  
Firoz Alam ◽  
David J. Lewis

Microparticles of indium oxide (In2O3) are deposited on glass substrates at 500 °C using aerosol assisted chemical vapour deposition (AACVD).


2006 ◽  
Vol 928 ◽  
Author(s):  
E. Elangovan ◽  
P Barquinha ◽  
A Pimental ◽  
A. S. Viana ◽  
R Martins ◽  
...  

ABSTRACTThin films of molybdenum doped indium oxide (IMO) were rf sputtered onto glass substrates at room temperature. The films were studied as a function of oxygen volume percentage (OVP) ranging 1.4 - 10.0 % in the sputtering chamber. The thickness of the films found varying between 180 and 260 nm. The X-ray diffraction pattern showed the films are polycrystalline with the peaks corresponding to (222) and (400) planes and one among them showing as a preferential orientation. It is observed that the preferred orientation changes from (222) plane to (400) as the OVP increases from 1.4 to 10.0 %. The transmittance spectra were found to be in the range of 77 to 89 %. The optical band gap calculated from the absorption coefficient of transmittance spectra was around 3.9 eV. The negative sign of Hall coefficient confirmed the films were n-type conducting. The bulk resistivity increased from 2.26 × 10−3 to 4.08 × 10−1 Ω−cm for the increase in OVP from 1.4 to 4.1 %, and thereafter increased dramatically so as the Hall coefficients were not detectable. From the AFM morphologies it is evaluated that the RMS roughness of the films ranges from 0.9 to 3.2 nm.


2006 ◽  
Vol 13 (02n03) ◽  
pp. 221-225 ◽  
Author(s):  
K. NARASIMHA RAO ◽  
SANJAY KASHYAP

Transparent and conducting oxide films find many applications because of their excellent properties such as high optical transparency, low surface resistance, high infrared reflectance, etc. Realization of these properties depend upon the choice of the deposition technique and the control of deposition parameters. In this paper, we report the preparation of highly transparent and conducting films of indium oxide ( In 2 O 3) and indium tin oxide (ITO) by activated reactive evaporation on glass substrates. These films were deposited by evaporating pure indium and 90% In + 10% Sn alloy using an electron gun in the presence of oxygen ions at ambient temperature. Films of different thickness have been prepared and their optical, electrical and structural properties are studied. In 2 O 3 films showed higher transparency (90%) compared to ITO films (85%) but the electrical resistivity was observed to be little higher (2.5 × 10-3 Ω cm) compared to ITO films (6 × 10-4 Ωcm). Hall measurements on aged ITO films gave the charge density of 3 × 1020 per cm3 and mobility 35.6 cm2/V-s. The refractive index and extinction coefficient were found to be around 2.0 and 0.005 for ITO films and 2.10 and 0.001 for In 2 O 3 films at 550 nm respectively. ITO and In 2 O 3 films were amorphous in nature for lesser thickness, but for thicker films, the partial crystallinity was observed.


RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75063-75072 ◽  
Author(s):  
Mohua Chakraborty ◽  
Dhrubojyoti Roy ◽  
Amrita Biswas ◽  
R. Thangavel ◽  
G. Udayabhanu

A low cost hydrothermal method and subsequent wet-chemical process has been used for the preparation of a ZnO nanorod (NR) array film grown on tin doped indium oxide (ITO) coated glass substrates, post decorated by α-Fe2O3 nanoparticles (NPs).


RSC Advances ◽  
2014 ◽  
Vol 4 (46) ◽  
pp. 23977-23984 ◽  
Author(s):  
Jiahua Tao ◽  
Junfeng Liu ◽  
Jun He ◽  
Kezhi Zhang ◽  
Jinchun Jiang ◽  
...  

Cu2ZnSnS4 (CZTS) absorbers have been successfully deposited on tin-doped indium oxide coated glass (ITO/glass) substrates by sulfurization process of co-electrodeposited Cu–Zn–Sn–S precursor thin films at various annealing temperatures ranging from 500 to 580 °C for 30 min in an atmosphere of Ar–H2S (6.5%).


Author(s):  
I. A. Rauf

To understand the electronic conduction mechanism in Sn-doped indium oxide thin films, it is important to study the effect of dopant atoms on the neighbouring indium oxide lattice. Ideally Sn is a substitutional dopant at random indium sites. The difference in valence (Sn4+ replaces In3+) requires that an extra electron is donated to the lattice and thus contributes to the free carrier density. But since Sn is an adjacent member of the same row in the periodic table, the difference in the ionic radius (In3+: 0.218 nm; Sn4+: 0.205 nm) will introduce a strain in the indium oxide lattice. Free carrier electron waves will no longer see a perfect periodic lattice and will be scattered, resulting in the reduction of free carrier mobility, which will lower the electrical conductivity (an undesirable effect in most applications).One of the main objectives of the present investigation is to understand the effects of the strain (produced by difference in the ionic radius) on the microstructure of the indium oxide lattice when the doping level is increased to give high carrier densities. Sn-doped indium oxide thin films were prepared with four different concentrations: 9, 10, 11 and 12 mol. % of SnO2 in the starting material. All the samples were prepared at an oxygen partial pressure of 0.067 Pa and a substrate temperature of 250°C using an Edwards 306 coating unit with an electron gun attachment for heating the crucible. These deposition conditions have been found to give optimum electrical properties in Sn-doped indium oxide films. A JEOL 2000EX transmission electron microscope was used to investigate the specimen microstructure.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (2) ◽  
pp. 17-25
Author(s):  
JUNMING SHU ◽  
ARTHAS YANG ◽  
PEKKA SALMINEN ◽  
HENRI VAITTINEN

The Ji’an PM No. 3 is the first linerboard machine in China to use multilayer curtain coating technology. Since successful startup at the end of 2011, further development has been carried out to optimize running conditions, coating formulations, and the base paper to provide a product with satisfactory quality and lower cost to manufacture. The key challenges include designing the base board structure for the desired mechanical strength, designing the surface properties for subsequent coating operations, optimizing the high-speed running of the curtain coater to enhance production efficiency, minimizing the amount of titanium dioxide in the coating color, and balancing the coated board properties to make them suitable for both offset and flexographic printing. The pilot and mill scale results show that curtain coating has a major positive impact on brightness, while smoothness is improved mainly by the blade coating and calendering conditions. Optimization of base board properties and the blade + curtain + blade concept has resulted in the successful use of 100% recycled fiber to produce base board. The optical, mechanical, and printability properties of the final coated board meet market requirements for both offset and flexographic printing. Machine runnability is excellent at the current speed of 1000 m/min, and titanium dioxide has been eliminated in the coating formulations without affecting the coating coverage. A significant improvement in the total cost of coated white liner production has been achieved, compared to the conventional concept of using virgin fiber in the top ply. Future development will focus on combining low cost with further quality improvements to make linerboard suitable for a wider range of end-use applications, including frozen-food packaging and folding boxboard.


Sign in / Sign up

Export Citation Format

Share Document