scholarly journals A Nitronaphthalimide Probe for Fluorescence Imaging of Hypoxia in Cancer Cells

Author(s):  
Rashmi Kumari ◽  
Vasumathy R ◽  
Dhanya Sunil ◽  
Raghumani Singh Ningthoujam ◽  
Badri Narain Pandey ◽  
...  

AbstractThe bioreductive enzymes typically upregulated in hypoxic tumor cells can be targeted for developing diagnostic and drug delivery applications. In this study, a new fluorescent probe 4−(6−nitro−1,3−dioxo−1H−benzo[de]isoquinolin−2(3H)−yl)benzaldehyde (NIB) based on a nitronaphthalimide skeleton that could respond to nitroreductase (NTR) overexpressed in hypoxic tumors is designed and its application in imaging tumor hypoxia is demonstrated. The docking studies revealed favourable interactions of NIB with the binding pocket of NTR-Escherichia coli. NIB, which is synthesized through a simple and single step imidation of 4−nitro−1,8−naphthalic anhydride displayed excellent reducible capacity under hypoxic conditions as evidenced from cyclic voltammetry investigations. The fluorescence measurements confirmed the formation of identical products (NIB-red) during chemical as well as NTR−aided enzymatic reduction in the presence of NADH. The potential fluorescence imaging of hypoxia based on NTR-mediated reduction of NIB is confirmed using in-vitro cell culture experiments using human breast cancer (MCF−7) cells, which displayed a significant change in the fluorescence colour and intensity at low NIB concentration within a short incubation period in hypoxic conditions. Graphical abstract

2015 ◽  
Vol 10 (4) ◽  
pp. 917 ◽  
Author(s):  
Mukesh Kumar Kumawat ◽  
Dipak Chetia

<p class="Abstract">Seven novel dispiro-1,2,4,5-tetraoxane derivatives were synthesized and characterized by a number of analytical and spectroscopic techniques. The molecules were subsequently screened for in vitro antimalarial activity against chloroquine resistant strain of <em>Plasmodium falciparum</em> (RKL-9). At antimalarial activity screening, two compounds, namely 5d (MIC = 15.6 µg/mL or 64.5 µM) and 5f (MIC = 15.6 µg/mL or 54.6 µM) were found to be about 1.5 times more potent against chloroquine resistant strain-RKL-9 compared to chloroquine (MIC = 25.0 µg/mL or 78.3 µM). Molecular docking studies of potent ligands were also performed in cysteine protease binding pocket residues of falcipain-2 as a target protein.</p><p> </p>


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3011-3011 ◽  
Author(s):  
Barbara Muz ◽  
Feda Azab ◽  
Pilar De La Puente ◽  
Ravi Vij ◽  
Abdel Kareem Azab

Abstract Introduction Waldenström Macroglobulinemia (WM) is a rare, low-grade B-cell lymphoma characterized by lymphoplasmacytic cells spread widely in the bone marrow (BM) and overproduction of monoclonal immunoglobulins M (IgM). Previous studies showed that tumor hypoxia develops in the BM of other hematologic malignancies and promotes dissemination. In this study, we tested the effect of hypoxia on cell proliferation, cell cycle and apoptosis; on egress and homing of WM cells from and into the BM; and on recovery and tumor colonization in the new BM niche. Methods We characterized the effect of tumor progression on generation of hypoxic conditions in the BM in vivo, by injecting BCWM1-mCherry cells to SCID mice, letting them grow for two weeks, analyzing the hypoxic state of the WM cells in the BM using pimonidazole, and testing the number of circulating cells. Moreover, we tested the effect of hypoxia on the homing of WM cells to the BM by injecting normoxic and hypoxic cells to mice and monitoring the number of the circulating WM cells in the blood at different time points by flow cytometry. Cancer cell colonization was assessed 1 and 3 days post IV injection of normoxic and hypoxic cells to mice; mononuclear cells were isolated from the BM, fixed, permeabilized and stained with antibodies for p-Rb and cyclin-E. The percentile of WM cells in the BM and the expression of cell cycle proteins were analyzed by flow cytometry. BCWM1 cells were exposed to normoxia (21% O2) or hypoxia (1% O2) in vitro for 24hrs, and n some cases reoxygenated for 24hrs. The expression of E-cadherin, VLA-4 and CXCR4 was analyzed by western blot or flow cytometry. We tested the effect of hypoxia on adhesion of WM cells to BM stroma and fibronectin. We further tested the effect of hypoxia on chemotactic properties of WM cells towards SDF-1 using a transwell migration chamber. In addition, we tested the effect of hypoxia on WM cell survival (by MTT assay), apoptosis and cell cycle (by using AnnexinV-PI and PI, respectively), and signaling pathways associated with survival, apoptosis and cell cycle (by western blotting). Results Tumor progression was shown to increase hypoxic conditions in the BM in vivo. We found a direct correlation between the percent of WM cells in the BM to the level of hypoxia. The level of hypoxia was in a direct correlation with the number of circulating WM cells in vivo. Then we mimicked the hypoxic conditions in vitro and found that cell progression (MTT) and cell cycle (PI staining) were decreased, but apoptosis of WM cells was not affected (AnnexinV-PI staining). These results were confirmed by decreased activation of the PI3K signaling pathway (p-PI3K, p-AKT, p-GSK) and decreased expression of cell cycle proteins (p-Rb, CDK2, CDK4, cyclin-D1 and p-cyclin-E); however, no change was observed in apoptosis-related proteins (PARP, cleaved caspase-3, -8 and -9). Moreover, hypoxia decreased the expression of E-cadherin which contributed to reduction of adhesion of WM cells to the BM stromal cells. At the same time, hypoxic WM cells exhibited increased CXCR4 surface expression and augmented migratory abilities in the presence of SDF-1. Neither the expression of integrins (VLA-4) nor the adhesion of WM cells to fibronectin was affected by hypoxia. This data indicates the conservation of the homing machinery of the WM to the BM despite the hypoxic conditions accompanied by increased chemotactic ability. When hypoxic and normoxic cells were injected to naïve mice, hypoxic cells showed enhanced homing to the BM and tumor colonization. Similarly, hypoxic cells which were reoxygenated in vitro showed more proliferation, cell cycle and activation of proliferative signaling pathways compared to normoxic cells. Conclusions We report that WM tumor growth in the BM increases hypoxia, and that hypoxia induces cell cycle arrest, and less proliferation of cells with no apoptosis. At the same time, hypoxia induces egress of WM cells from the BM through reduction of E-cadherin expression and decreased adhesion. When in the circulation, previously hypoxic cells home more efficiently to the BM through increased expression of CXCR4 and chemotaxis, and through maintaining expression of integrins and adhesion to fibronectin. When in the new oxygenated BM niche, hypoxic WM cells recover and colonize the new niche better than normoxic cells, and reoxygenated hypoxic cells have faster cell cycle and proliferation rate. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 16 (6) ◽  
pp. 826-840
Author(s):  
Saeed Ullah ◽  
Salma Mirza ◽  
Uzma Salar ◽  
Shafqat Hussain ◽  
Kulsoom Javaid ◽  
...  

Background: Results of our previous studies on antiglycation activity, and the noncytotoxicity of 2-mercapto benzothiazoles, encouraged us to further widen our investigation towards the identification of leads against diabetes mellitus. Methods: 33 derivatives of 2-mercapto benzothiazoles 1-33 were evaluated for in vitro α- glucosidase inhibitory activity. Mode of inhibition was deduced by kinetic studies. To predict the interactions of 2-mercapto benzothiazole derivatives 1-33 with the binding pocket of α-glucosidase enzyme, molecular docking studies were performed on the selected inhibitors. Results: Compounds 2-4, 6-7, 9-26, 28 and 30 showed many folds potent α-glucosidase inhibitory activity in the range of IC50 = 31.21-208.63 μM, as compared to the standard drug acarbose (IC50 = 875.75 ± 2.08 μM). It was important to note that except derivative 28, all other derivatives were also found previously to have antiglycating potential in the range of IC50 = 187.12-707.21 μM. Conclusion: A number of compounds were identified as dual nature as antiglycating agent and α- glucosidase inhibitors. These compounds may serve as potential lead candidates for the management of diabetes mellitus.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 887
Author(s):  
Kamal A. Qureshi ◽  
Ibrahim Al Nasr ◽  
Waleed S. Koko ◽  
Tariq A. Khan ◽  
M. Qaiser Fatmi ◽  
...  

Leishmaniasis, a Neglected Tropical Parasitic Disease (NTPD), is induced by several Leishmania species and is disseminated through sandfly (Lutzomyia longipalpis) bites. The parasite has developed resistance to currently prescribed antileishmanial drugs, and it has become pertinent to the search for new antileishmanial agents. The current study aimed to investigate the in vitro and in silico antileishmanial activity of two newly sourced actinomycins, X2 and D, produced by the novel Streptomyces smyrnaeus strain UKAQ_23. The antileishmanial activity conducted on promastigotes and amastigotes of Leishmania major showed actinomycin X2 having half-maximal effective concentrations (EC50), at 2.10 ± 0.10 μg/mL and 0.10 ± 0.0 μg/mL, and selectivity index (SI) values of 0.048 and 1, respectively, while the actinomycin D exhibited EC50 at 1.90 ± 0.10 μg/mL and 0.10 ± 0.0 μg/mL, and SI values of 0.052 and 1. The molecular docking studies demonstrated squalene synthase as the most favorable antileishmanial target protein for both the actinomycins X2 and D, while the xanthine phosphoribosyltransferase was the least favorable target protein. The molecular dynamics simulations confirmed that both the actinomycins remained stable in the binding pocket during the simulations. Furthermore, the MMPBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) binding energy calculations established that the actinomycin X2 is a better binder than the actinomycin D. In conclusion, both actinomycins X2 and D from Streptomyces smyrnaeus strain UKAQ_23 are promising antileishmanial drug candidates and have strong potential to be used for treating the currently drug-resistant leishmaniasis.


2021 ◽  
Author(s):  
Michele Biagioli ◽  
Silvia Marchianò ◽  
Rosalinda Roselli ◽  
Cristina Di Giorgio ◽  
Rachele Bellini ◽  
...  

AbstractThe severe acute respiratory syndrome (SARS)-CoV-2, a newly emerged coronavirus first identified in 2019, is the pathogenetic agent od Corona Virus Induced Disease (COVID)19. The virus enters the human cells after binding to the angiotensin converting enzyme (ACE) 2 receptor in target tissues. ACE2 expression is induced in response to inflammation. The colon expression of ACE2 is upregulated in patients with inflammatory bowel disease (IBD), highlighting a potential risk of intestinal inflammation in promoting viral entry in the human body. Because mechanisms that regulate ACE2 expression in the intestine are poorly understood and there is a need of anti-SARS-CoV2 therapies, we have settled to investigate whether natural flavonoids might regulate the expression of ACE2 in intestinal models of inflammation. The results of these studies demonstrated that pelargonidin, a natural flavonoid bind and activates the Aryl hydrocarbon Receptor (AhR) in vitro and reverses intestinal inflammation caused by chronic exposure to high fat diet or to the intestinal braking-barrier agent DSS in a AhR-dependent manner. In these two models, development of colon inflammation associated with upregulation of ACE2 mRNA expression. Colon levels of ACE2 mRNA were directly correlated with TNFα mRNA levels. In contrast to ACE2 the angiotensin 1-7 receptor MAS was downregulated in the inflamed tissues. Molecular docking studies suggested that pelargonidin binds a fatty acid binding pocket on the receptor binding domain of SARS-CoV2 Spike protein. In vitro studies demonstrated that pelargonidin significantly reduces the binding of SARS-CoV2 Spike protein to ACE2 and reduces the SARS-CoV2 replication in a concentration-dependent manner. In summary, we have provided evidence that a natural flavonoid might hold potential in reducing intestinal inflammation and ACE2 induction in the inflamed colon in a AhR-dependent manner.


2020 ◽  
Vol 48 (14) ◽  
pp. 7653-7664 ◽  
Author(s):  
Anita Donlic ◽  
Martina Zafferani ◽  
Giacomo Padroni ◽  
Malavika Puri ◽  
Amanda E Hargrove

Abstract Small molecule-based modulation of a triple helix in the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been proposed as an attractive avenue for cancer treatment and a model system for understanding small molecule:RNA recognition. To elucidate fundamental recognition principles and structure–function relationships, we designed and synthesized nine novel analogs of a diphenylfuran-based small molecule DPFp8, a previously identified lead binder of MALAT1. We investigated the role of recognition modalities in binding and in silico studies along with the relationship between affinity, stability and in vitro enzymatic degradation of the triple helix. Specifically, molecular docking studies identified patterns driving affinity and selectivity, including limited ligand flexibility, as observed by ligand preorganization and 3D shape complementarity for the binding pocket. The use of differential scanning fluorimetry allowed rapid evaluation of ligand-induced thermal stabilization of the triple helix, which correlated with decreased in vitro degradation of this structure by the RNase R exonuclease. The magnitude of stabilization was related to binding mode and selectivity between the triple helix and its precursor stem loop structure. Together, this work demonstrates the value of scaffold-based libraries in revealing recognition principles and of raising broadly applicable strategies, including functional assays, for small molecule–RNA targeting.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4739
Author(s):  
Duc Hoàng Lande ◽  
Abed Nasereddin ◽  
Arne Alder ◽  
Tim W. Gilberger ◽  
Ron Dzikowski ◽  
...  

Malaria is one of the most dangerous infectious diseases. Because the causative Plasmodium parasites have developed resistances against virtually all established antimalarial drugs, novel antiplasmodial agents are required. In order to target plasmodial kinases, novel N-unsubstituted bisindolylcyclobutenediones were designed as analogs to the kinase inhibitory bisindolylmaleimides. Molecular docking experiments produced favorable poses of the unsubstituted bisindolylcyclobutenedione in the ATP binding pocket of various plasmodial protein kinases. The synthesis of the title compounds was accomplished by sequential Friedel-Crafts acylation procedures. In vitro screening of the new compounds against transgenic NF54-luc P. falciparum parasites revealed a set of derivatives with submicromolar activity, of which some displayed a reasonable selectivity profile against a human cell line. Although the molecular docking studies suggested the plasmodial protein kinase PfGSK-3 as the putative biological target, the title compounds failed to inhibit the isolated enzyme in vitro. As selective submicromolar antiplasmodial agents, the N-unsubstituted bisindolylcyclobutenediones are promising starting structures in the search for antimalarial drugs, albeit for a rational development, the biological target addressed by these compounds has yet to be identified.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 799 ◽  
Author(s):  
Agnieszka Adamczyk-Woźniak ◽  
Jan T. Gozdalik ◽  
Dorota Wieczorek ◽  
Izabela D. Madura ◽  
Ewa Kaczorowska ◽  
...  

2-Formylphenylboronic acids display many interesting features, not only from synthetic but also from an application as well as structural points of view. 5-Trifluoromethyl-2-formyl phenylboronic acid has been synthesized and characterized in terms of its structure and properties. The presence of an electron-withdrawing substituent results in a considerable rise in the acidity in comparison with its analogues. In some solutions, the title compound isomerizes with formation of the corresponding 3-hydroxybenzoxaborole. Taking into account the probable mechanism of antifungal action of benzoxaboroles, which blocks the cytoplasmic leucyl-tRNA synthetase (LeuRS) of the microorganism, docking studies with the active site of the enzymes have been carried out. It showed possible binding of the cyclic isomer into the binding pocket of Candida albicans LeuRS, similar to that of the recently approved benzoxaborole antifungal drug (AN2690, Tavaborole, Kerydin). In case of Escherichia coli LeuRS, the opened isomer displays a much higher inhibition constant in comparison with the cyclic one. The antimicrobial activity of the title compound was also investigated in vitro, showing moderate action against Candida albicans. The compound reveals higher activity against Aspergillus niger as well as bacteria such as Escherichia coli and Bacillus cereus. In case of Bacillus cereus, the determined Minimum Inhibitory Concentration (MIC) value is lower than that of AN2690 (Tavaborole). The results confirm potential of 2-formylphenylboronic acids as antibacterial agents and give a hint of their possible mechanism of action.


2021 ◽  
Vol 17 (11) ◽  
pp. 2186-2197
Author(s):  
Xin Li ◽  
Xueyang Fang ◽  
Shiying Li ◽  
Kwok-Ho Lui ◽  
Wai-Sum Lo ◽  
...  

Hypoxia is an important phenomenon due to insufficient oxygen supply in tumor tissue, and nitroreductase (NTR) is a characteristic enzyme used for evaluating hypoxia level in tumors. In this work, we designed a smart gold nanoparticle (AuNPs), modified by 16-mercaptoundecanoic acid (MHDA) and hypoxia-responsive 11-(2-nitro-1H-imidazol-1-yl)undecane-1-thiol (NI) ligand, that responds to the hypoxic environment in tumor sites. With proper surface ligand composition, the responsive nanoprobe exhibited aggregation through the bioreduction of the nitro group on NI ligands under hypoxic conditions and the UV-vis absorption peak maximum would shift to 630 nm from 530 nm, which acts as an “off–on” contrast agent for tumor hypoxic photoacoustic (PA) imaging. In vitro and in vivo experiments revealed that AuNPs@MHDA/NO2 exhibited an enhanced PA signal in hypoxic conditions. This study demonstrates the potential of hypoxia-responsive AuNPs as novel and sensitive diagnostic agents, which lays a firm foundation for precise cancer treatment in the future.


Sign in / Sign up

Export Citation Format

Share Document