scholarly journals Changes in Immune Cell Types with Age in Breast are Consistent with a Decline in Immune Surveillance and Increased Immunosuppression

Author(s):  
Arrianna Zirbes ◽  
Jesuchristopher Joseph ◽  
Jennifer C. Lopez ◽  
Rosalyn W. Sayaman ◽  
Mudaser Basam ◽  
...  

AbstractA majority of breast cancers (BC) are age-related and we seek to determine what cellular and molecular changes occur in breast tissue with age that make women more susceptible to cancer initiation. Immune-epithelial cell interactions are important during mammary gland development and the immune system plays an important role in BC progression. The composition of human immune cell populations is known to change in peripheral blood with age and in breast tissue during BC progression. Less is known about changes in immune populations in normal breast tissue and how their interactions with mammary epithelia change with age. We quantified densities of T cells, B cells, and macrophage subsets in pathologically normal breast tissue from 122 different women who ranged in age from 24 to 74 years old. Donor-matched peripheral blood from a subset of 20 donors was analyzed by flow cytometry. Tissue immune cell densities and localizations relative to the epithelium were quantified in situ with machine learning-based image analyses of multiplex immunohistochemistry-stained tissue sections. In situ results were corroborated with flow cytometry analyses of peri-epithelial immune cells from primary breast tissue preparations and transcriptome analyses of public data from bulk tissue reduction mammoplasties. Proportions of immune cell subsets in breast tissue and donor-matched peripheral blood were not correlated. Density (cells/mm2) of T and B lymphocytes in situ decreased with age. T cells and macrophages preferentially localized near or within epithelial bilayers, rather than the intralobular stroma. M2 macrophage density was higher than M1 macrophage density and this difference was due to higher density of M2 in the intralobular stroma. Transcriptional signature analyses suggested age-dependent decline in adaptive immune cell populations and functions and increased innate immune cell activity. T cells and macrophages are so intimately associated with the epithelia that they are embedded within the bilayer, suggesting an important role for immune-epithelial cell interactions. Age-associated decreased T cell density in peri-epithelial regions, and increased M2 macrophage density in intralobular stroma suggests the emergence of a tissue microenvironment that is simultaneously immune-senescent and immunosuppressive with age.

2021 ◽  
Author(s):  
Arrianna Zirbes ◽  
Jesuchristopher Joseph ◽  
Jennifer C Lopez ◽  
Rosalyn W Sayaman ◽  
Mudaser Basam ◽  
...  

Abstract Background : A majority of breast cancers (BC) are age-related and we seek to determine what cellular and molecular changes occur in breast tissue with age that make women more susceptible to cancer initiation. Immune-epithelial cell interactions are important during mammary gland development and the immune system plays an important role in BC progression. The composition of human immune cell populations is known to change in peripheral blood with age and in breast tissue during BC progression. Less is known about changes in immune populations in normal breast tissue and how their interactions with mammary epithelia change with age. Methods : We quantified densities of T cells, B cells, and macrophage subsets in pathologically normal breast tissue from 122 different women who ranged in age from 24 to 74 years old. Donor-matched peripheral blood from a subset of 20 donors was analyzed by flow cytometry. Tissue immune cell densities and localizations relative to the epithelium were quantified in situ with machine learning-based analyses of multiplex immunohistochemistry-stained tissue sections. In situ results were corroborated with flow cytometry analyses of peri-epithelial immune cells from primary organoid preparations and transcriptome analyses of public data from bulk tissue reduction mammoplasties. Results : Proportions of immune cell subsets in breast tissue and donor-matched peripheral blood were not correlated. Density (cells/mm 2 ) of T and B lymphocytes in situ decreased with age. T cells and macrophages preferentially localized near or within epithelial bilayers, rather than the intralobular stroma. M2:M1 macrophage ratio increased with age and was accompanied by an increased density of M2 in the intralobular stroma. Transcriptional signature analyses suggested age-dependent decline in adaptive immune cell populations and functions and increased innate immune cell activity. Conclusions : T cells and macrophages are so intimately associated with the epithelia that they are embedded within the bilayer, suggesting an important role for immune-epithelial cell interactions. Age-associated decreased T cell density in peri-epithelial regions, and increased M2 macrophage density in intralobular stroma suggests the emergence of a tissue microenvironment that is simultaneously immune-senescent and immunosuppressive with age .


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Michael Abadier ◽  
Jose Estevam ◽  
Deborah Berg ◽  
Eric Robert Fedyk

Background Mezagitamab is a fully human immunoglobulin (Ig) G1 monoclonal antibody with high affinity to CD38 that depletes tumor cells expressing CD38 by antibody- and complement-dependent cytotoxicity. CD38 is a cell surface molecule that is highly expressed on myeloma cells, plasma cells, plasmablasts, and natural killer (NK) cells, and is induced on activated T cells and other suppressor cells including regulatory T (Tregs) and B (Bregs) cells. Data suggest that immune landscape changes in cancer patients and this may correlate with disease stage and clinical outcome. Monitoring specific immune cell subsets could predict treatment responses since certain cell populations either enhance or attenuate the anti-tumor immune response. Method To monitor the immune landscape changes in RRMM patients we developed a mass cytometry panel that measures 39-biomarkers to identify multiple immune cell subsets, including T cells (naïve, memory, effector, regulatory), B cells (naïve, memory, precursors, plasmablasts, regulatory), NK cells, NKT cells, gamma delta T cells, monocytes (classical, non-classical and intermediate), dendritic cells (mDC; myeloid and pDC; plasmacytoid) and basophils. After a robust analytical method validation, we tested cryopreserved peripheral blood and bone marrow mononuclear cells from 19 RRMM patients who received ≥ 3 prior lines of therapy. Patients were administered 300 or 600 mg SC mezagitamab on a QWx8, Q2Wx8 and then Q4Wx until disease progression schedule (NCT03439280). We compared the percent change in immune cell subsets at baseline versus week 4 and week 16. Results CD38 is expressed at different levels on immune cells and sensitivity to depletion by mezagitamab generally correlates positively with the density of expression. CD38 is expressed at high densities on plasmablasts, Bregs, NK-cells, pDC and basophils at baseline and this was associated with reductions in peripheral blood and bone marrow (plasmablasts, 95%, Bregs, 90%, NK-cells, 50%, pDC, 55% and basophils, 40%) at week 4 post treatment. In contrast, no changes occurred in the level of total T-cells and B-cells, which is consistent with low expression of CD38 on most cells of these large populations. Among the insensitive cell types, remaining NK-cells acquired an activated, proliferative and effector phenotype. We observed 60-150% increase in activation (CD69, HLA-DR), 110-200% increase in proliferation (Ki-67), and 40-375% increase in effector (IFN-γ) markers in peripheral blood and bone marrow. Importantly, NK-cells which did not express detectable CD38, also exhibited a similar phenotype possibly by a mechanism independent of CD38. Consistent with these data, the remaining CD4 and CD8 T-cell populations exhibited an activated effector phenotype as observed by 40-200% increase in activation, 60-200% increase in proliferation and 40-90% increase in effector markers in peripheral blood. A potential explanation for this acquisition of activated effector phenotypes could be a reduction in suppressive regulatory lymphocytes. Next, we measured levels of Tregs and Bregs, and observed that Bregs which are CD24hiCD38hi were reduced to 60-90% in peripheral blood and bone marrow. In contrast, total Tregs were reduced by only 5-25% because CD38 expression in Tregs appears as a spectrum where only ~10-20% are CD38+, and thus CD38+ Tregs were reduced more significantly (45-75%), reflecting the selectively of mezagitamab to cells expressing high levels of CD38. CD38+ Tregs are induced in RRMM patients, thus we looked at the phenotype of CD38-, CD38mid, and CD38high -expressing Tregs. We observed higher level of markers that correlate with highly suppressive Tregs such as Granzyme B, Ki-67, CTLA-4 and PD-1 in CD38high Tregs. Accordingly, the total Treg population exhibited a less active phenotype after exposure to mezagitamab, which selectively depleted the highly suppressive CD38+ Tregs. Conclusions Chronic treatment with mezagitamab is immunomodulatory in patients with RRMM, which is associated with reductions in tumor burden, subpopulations of B and T regulatory cells, and characterized by conventional NK and T cells exhibiting an activated, proliferative and effector phenotype. The immune landscape changes observed is consistent with the immunologic concept of converting the tumor microenvironment from cold-to-hot and highlights a key mechanistic effect of mezagitamab. Disclosures Berg: Takeda Pharmaceuticals Inc: Current Employment.


2017 ◽  
Author(s):  
John F. Beausang ◽  
Amanda J. Wheeler ◽  
Natalie H. Chan ◽  
Violet R. Hanft ◽  
Frederick M. Dirbas ◽  
...  

Tumor infiltrating T-cells play an important role in many cancers, and can improve prognosis and yield therapeutic targets. We characterized T-cells infiltrating both breast cancer tumors and the surrounding normal breast tissue to identify T-cells specific to each, as well as their abundance in peripheral blood. Using immune profiling of the T-cell beta chain repertoire in 16 patients with early stage breast cancer, we show that the clonal structure of the tumor is significantly different from adjacent breast tissue, with the tumor containing approximately 3-fold more T-cells, but with a lower fraction of unique sequences and higher clonality compared to normal breast. The clonal structure of T-cells in blood and normal breast is more similar than between blood and tumor and can be used to distinguish tumor from normal breast tissue in 14 of 16 patients. Many T-cells overlap between tissues from the same patient, including approximately 50% of T-cells between tumor and normal breast. Both solid tissues contain high-abundance "enriched" sequences that are absent or of low abundance in the other tissue. Many of these T-cells are either not detected or detected with very low frequency in the blood, suggesting the existence of separate compartments of T-cells in both tumor and normal breast. Enriched T-cell sequences are typically unique to each patient, but there is a subset of sequences that are shared between many different patients. We show that most of these are commonly generated sequences and thus unlikely to play an important role in the tumor microenvironment.


2018 ◽  
Author(s):  
Owen M. Wilkins ◽  
Kevin C. Johnson ◽  
E. Andres Houseman ◽  
Jessica E. King ◽  
Carmen J. Marsit ◽  
...  

Abstract5-hydroxymethylcytosine (5hmC) is generated by oxidation of 5-methylcytosine (5mC), however little is understood regarding the distribution and functions of 5hmC in mammalian cells. We determined the genome-wide distribution of 5hmC and 5mC in normal breast tissue from disease-free women. Although less abundant than 5mC, 5hmC is differentially distributed, and consistently enriched among breast-specific enhancers and transcriptionally active chromatin. In contrast, regulatory regions associated with transcriptional inactivity were relatively depleted of 5hmC. Gene regions containing abundant 5hmC were significantly associated with lactate oxidation, immune cell function, and prolactin signaling pathways. In independent data sets, normal breast tissue 5hmC was significantly enriched among CpG loci demonstrated to have altered methylation in pre-invasive breast cancer and invasive breast tumors. Our findings provide a genome-wide map of nucleotide-level 5hmC in normal breast tissue and demonstrate that 5hmC is positioned to contribute to gene regulatory functions which protect against carcinogenesis.


2014 ◽  
Vol 144 (3) ◽  
pp. 539-549 ◽  
Author(s):  
Amy C. Degnim ◽  
Rushin D. Brahmbhatt ◽  
Derek C. Radisky ◽  
Tanya L. Hoskin ◽  
Melody Stallings-Mann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document