Mezagitamab Induces Immunomodulatory Effect in Patients with Relapsed/Refractory Multiple Myeloma (RRMM)

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Michael Abadier ◽  
Jose Estevam ◽  
Deborah Berg ◽  
Eric Robert Fedyk

Background Mezagitamab is a fully human immunoglobulin (Ig) G1 monoclonal antibody with high affinity to CD38 that depletes tumor cells expressing CD38 by antibody- and complement-dependent cytotoxicity. CD38 is a cell surface molecule that is highly expressed on myeloma cells, plasma cells, plasmablasts, and natural killer (NK) cells, and is induced on activated T cells and other suppressor cells including regulatory T (Tregs) and B (Bregs) cells. Data suggest that immune landscape changes in cancer patients and this may correlate with disease stage and clinical outcome. Monitoring specific immune cell subsets could predict treatment responses since certain cell populations either enhance or attenuate the anti-tumor immune response. Method To monitor the immune landscape changes in RRMM patients we developed a mass cytometry panel that measures 39-biomarkers to identify multiple immune cell subsets, including T cells (naïve, memory, effector, regulatory), B cells (naïve, memory, precursors, plasmablasts, regulatory), NK cells, NKT cells, gamma delta T cells, monocytes (classical, non-classical and intermediate), dendritic cells (mDC; myeloid and pDC; plasmacytoid) and basophils. After a robust analytical method validation, we tested cryopreserved peripheral blood and bone marrow mononuclear cells from 19 RRMM patients who received ≥ 3 prior lines of therapy. Patients were administered 300 or 600 mg SC mezagitamab on a QWx8, Q2Wx8 and then Q4Wx until disease progression schedule (NCT03439280). We compared the percent change in immune cell subsets at baseline versus week 4 and week 16. Results CD38 is expressed at different levels on immune cells and sensitivity to depletion by mezagitamab generally correlates positively with the density of expression. CD38 is expressed at high densities on plasmablasts, Bregs, NK-cells, pDC and basophils at baseline and this was associated with reductions in peripheral blood and bone marrow (plasmablasts, 95%, Bregs, 90%, NK-cells, 50%, pDC, 55% and basophils, 40%) at week 4 post treatment. In contrast, no changes occurred in the level of total T-cells and B-cells, which is consistent with low expression of CD38 on most cells of these large populations. Among the insensitive cell types, remaining NK-cells acquired an activated, proliferative and effector phenotype. We observed 60-150% increase in activation (CD69, HLA-DR), 110-200% increase in proliferation (Ki-67), and 40-375% increase in effector (IFN-γ) markers in peripheral blood and bone marrow. Importantly, NK-cells which did not express detectable CD38, also exhibited a similar phenotype possibly by a mechanism independent of CD38. Consistent with these data, the remaining CD4 and CD8 T-cell populations exhibited an activated effector phenotype as observed by 40-200% increase in activation, 60-200% increase in proliferation and 40-90% increase in effector markers in peripheral blood. A potential explanation for this acquisition of activated effector phenotypes could be a reduction in suppressive regulatory lymphocytes. Next, we measured levels of Tregs and Bregs, and observed that Bregs which are CD24hiCD38hi were reduced to 60-90% in peripheral blood and bone marrow. In contrast, total Tregs were reduced by only 5-25% because CD38 expression in Tregs appears as a spectrum where only ~10-20% are CD38+, and thus CD38+ Tregs were reduced more significantly (45-75%), reflecting the selectively of mezagitamab to cells expressing high levels of CD38. CD38+ Tregs are induced in RRMM patients, thus we looked at the phenotype of CD38-, CD38mid, and CD38high -expressing Tregs. We observed higher level of markers that correlate with highly suppressive Tregs such as Granzyme B, Ki-67, CTLA-4 and PD-1 in CD38high Tregs. Accordingly, the total Treg population exhibited a less active phenotype after exposure to mezagitamab, which selectively depleted the highly suppressive CD38+ Tregs. Conclusions Chronic treatment with mezagitamab is immunomodulatory in patients with RRMM, which is associated with reductions in tumor burden, subpopulations of B and T regulatory cells, and characterized by conventional NK and T cells exhibiting an activated, proliferative and effector phenotype. The immune landscape changes observed is consistent with the immunologic concept of converting the tumor microenvironment from cold-to-hot and highlights a key mechanistic effect of mezagitamab. Disclosures Berg: Takeda Pharmaceuticals Inc: Current Employment.

Author(s):  
Craig M. Rive ◽  
Eric Yung ◽  
Lisa Dreolini ◽  
Daniel J. Woodsworth ◽  
Robert A. Holt

AbstractAnti-CD19 CAR-T therapy for B cell malignancies has shown clinical success, but a major limitation is the logistical complexity and high cost of manufacturing autologous cell products. Direct infusion of viral gene transfer vectors to initiate in vivo CAR-T transduction, expansion and anti-tumor activity could provide an alternative, universal approach for CAR-T and related immune effector cell therapies that circumvents ex vivo cell manufacturing. To explore the potential of this approach we first evaluated human and murine CD8+ T cells transduced with VSV-G pseudotyped lentivectors carrying an anti-CD19CAR-2A-GFP transgene comprising either an FMC63 (human) or 1D3 (murine) anti-CD19 binding domain. To evaluate CD19 antigen-driven CAR-T proliferation in vitro we co-cultured transduced murine T cells with an excess of irradiated splenocytes and observed robust expansion over a 9 week period relative to control T cells transduced with a GFP transgene (mean fold expansion +/- SD: ID3-CD19CAR-GFP modified T cells, 12.2 +/- 0.09 (p < 0.001); FMC63-CD19CAR-GFP modified T cells 8.8 +/- 0.03 (p < 0.001). CAR-T cells isolated at the end of the expansion period showed potent B cell directed cytolytic activity in vitro. Next, we administered approximately 20 million replication-incompetent lentiviral particles carrying either ID3-CD19CAR-GFP, FMC63-CD19CAR-GFP, or GFP-only transgene to to wild-type C57BL/6 mice by tail vein infusion and monitored the dynamics of immune cell subsets isolated from peripheral blood at weekly intervals. We saw emergence of a persistent CAR-transduced CD3+ T cell population beginning week 3-4 that reaching a maximum of 13.5 +/- 0.58 % (mean +/- SD) and 7.8 +/- 0.76% of the peripheral blood CD3+ T cell population in mice infused with ID3-CD19CAR-GFP lentivector or FMC63-CD19CAR-GFP lentivector, respectively, followed by a rapid decline, in each case of, the B cell content of peripheral blood. Complete B cell aplasia was apparent by week 5 and was sustained until the end of the protocol (week 8). None of these changes were observed in mice infused with GFP-only control lentivector, and significant CAR positive populations were not observed within other immune cell subsets, including macrophage, natural killer, or B cells. Within the T cell compartment, CD8+ effector memory cells were the predominant CAR-positive subset. Modest weight loss of 5.5 +/- 2.97 % (mean +/- SD) observed in some animals receiving an anti-CD19CAR-GFP transgene during the protocol. These results indicate that direct IV infusion of lentiviral particles carrying an anti-CD19 CAR transgene can transduce T cells that then fully ablate endogenous B cells in wild type mice. Based on these results it may be useful to further explore, using currently available vectors, the feasibility of systemic gene therapy as a modality for CAR-T intervention.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haipeng Jia ◽  
Xiaofen Zhang ◽  
Xinxin Liu ◽  
Ruifang Qiao ◽  
Yan Liu ◽  
...  

Objective: Multiple myeloma is an incurable hematological malignancy. It is imperative to identify immune markers for early diagnosis and therapy. Here, this study analyzed immune-related mRNAs and assessed their prognostic value and therapeutic potential.Methods: Abnormally expressed immune-related mRNAs were screened between multiple myeloma and normal bone marrow specimens in the GSE47552 and GSE6477 datasets. Their biological functions were then explored. Survival analysis was presented for assessing prognosis-related mRNAs. CIBERSORT was utilized for identifying 22 immune cell compositions of each bone marrow specimen. Correlation between FABP5 mRNA and immune cells was then analyzed in multiple myeloma.Results: Thirty-one immune-related mRNAs were abnormally expressed in multiple myeloma, which were primarily enriched in B cells-related biological processes and pathways. Following validation, FABP5 mRNA was a key risk factor of multiple myeloma. Patients with its up-regulation usually experienced unfavorable outcomes. There were distinct differences in the infiltration levels of B cells naïve, B cells memory, plasma cells, T cells CD4 naïve, resting memory CD4 T cells, activated memory CD4 T cells, Tregs, resting NK cells, M0 macrophages, M1 macrophages, M2 macrophages, and neutrophils between multiple myeloma and normal samples. FABP5 mRNA had correlations to B cells memory, B cells naïve, dendritic cells activated, macrophages M0, macrophages M1, macrophages M2, neutrophils, activated NK cells, resting memory CD4 T cells, CD8 T cells and Tregs.Conclusion: Collectively, our data showed that FABP5 mRNA was related to immune microenvironment, which could be a target of immunotherapy and prognostic marker for multiple myeloma.


2019 ◽  
Vol 317 (1) ◽  
pp. H190-H200 ◽  
Author(s):  
Christina Alter ◽  
Zhaoping Ding ◽  
Ulrich Flögel ◽  
Jürgen Scheller ◽  
Jürgen Schrader

Although the cardioprotective effect of adenosine is undisputed, the role of the adenosine A2breceptor (A2bR) in ischemic cardiac remodeling is not defined. In this study we aimed to unravel the role A2bR plays in modulating the immune response and the healing mechanisms after myocardial infarction. Genetic and pharmacological (PSB603) inactivation of A2bR as well as activation of A2bR with BAY60-6583 does not alter cardiac remodeling of the infarcted (50-min left anterior descending artery occlusion/reperfusion) murine heart. Flow cytometry of immune cell subsets identified a significant increase in B cells, NK cells, CD8 and CD4 T cells, as well as FoxP3-expressing regulatory T cells in the injured heart in A2bR-deficient mice. Analysis of T-cell function revealed that expression and secretion of interleukin (IL)-2, interferon (IFN)γ, and tumor necrosis factor (TNF)α by T cells is under A2bR control. In addition, we found substantial cellular heterogeneity in the response of immune cells and cardiomyocytes to A2bR deficiency: while in the absence of A2bR, expression of IL-6 was greatly reduced in cardiomyocytes and immune cells except T cells, and expression of IL-1β was strongly reduced in cardiomyocytes, granulocytes, and B cells as determined by quantitative PCR. Our findings indicate that A2bR signaling in the ischemic heart triggers substantial changes in cardiac immune cell composition of the lymphoid lineage and induces a profound cell type-specific downregulation of IL-6 and IL-1β. This suggests the presence of a targetable adenosine–A2bR–IL-6-axis triggered by adenosine formed by the ischemic heart.NEW & NOTEWORTHY Genetic deletion and pharmacological inactivation/activation of A2bR does not alter cardiac remodeling after MI but is associated by compensatory upregulation of various pro- and anti-inflammatory immune cell subsets (B cells, NK cells, CD8 and CD4 T cells, regulatory T cells). In the inflamed heart, A2bR modulates the expression of IL-2, IFNγ, TNFα in T cells and of IL-6 in cardiomyocytes, monocytes, granulocytes and B cells. This suggests an important adenosine–IL-6 axis, which is controlled by A2bR via local adenosine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong Liu ◽  
Xin-Xiu Lin ◽  
Xiao-Bo Huang ◽  
Dong-Hui Huang ◽  
Su Song ◽  
...  

Recurrent pregnancy loss (RPL) is a disturbing disease in women, and 50% of RPL is reported to be associated with immune dysfunction. Most previous studies of RPL focused mainly on the relationship between RPL and either T cells or natural killer (NK) cells in peripheral blood and the decidua; few studies presented the systemic profiles of the peripheral immune cell subsets in RPL women. Herein, we simultaneously detected 63 immune cell phenotypes in the peripheral blood from nonpregnant women (NPW), women with a history of normal pregnancy (NP) and women with a history of RPL (RPL) by multi-parameter flow cytometry. The results demonstrated that the percentages of naïve CD4+ T cells, central memory CD4+ T cells, naïve CD8+ T cells, mature NK cells, Vδ1+ T cells and the ratio of Vδ1+ T cells/Vδ2+ T cells were significantly higher in the RPL group than those in the NPW and NP groups, whereas the percentages of terminal differentiated CD4+ T cells, effective memory CD4+ T cells, immature NK cells and Vδ2+ T cells were significantly lower in the RPL group than those in the NPW and NP groups. Interestingly, we found that peripheral T helper (TPH) cells were more abundant in the NPW group than in the NP and RPL groups. Moreover, the percentage of Vδ2+PD-1+ gamma-delta (γδ) T cells was extremely high, above the 95th percentile limit, in the NP group compared with the NPW and RPL groups, which has never been reported before. In addition, we also determined the 5th percentile lower limit and 95th percentile upper limit of the significantly changed immunological parameters based on the files of the NPW group. Taken together, this is the first study to simultaneously characterize the multiple immune cell subsets in the peripheral blood at a relatively large scale in RPL, which might provide a global readout of the immune status for clinicians to identify clinically-relevant immune disorders and guide them to make clear and individualized advice and treatment plans.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 592-592
Author(s):  
Roberto Antonio Leon-Ferre ◽  
Kaitlyn McGrath ◽  
Vera J. Suman ◽  
Jodi M Carter ◽  
Krishna R. Kalari ◽  
...  

592 Background: Immune responses in the tumor microenvironment have prognostic and predictive value in BC. However, the potential of immune responses observed in peripheral blood as biomarkers in BC remains unclear. We have shown that a higher frequency of circulating monocytes and a lower frequency of antigen-experienced memory CD8+ T cells are associated with response to NAC in triple negative BC (Leon-Ferre et al SABCS 2019). Here, we used cytometry by time-of-flight (CyTOF) to evaluate associations between circulating immune cells, clinical features and response to T-based NAC in HER2+ BC. Methods: PBMC suspensions from 36 pts with stage I-III HER2+ BC were prospectively collected prior to initiation of T-based NAC, stained with 29 metal-tagged antibodies optimized to identify major human immune cell subsets, and acquired in the Helios CyTOF instrument. Differential abundance analysis of immune cells by clinical characteristics and by NAC response was evaluated using Wilcoxon rank sum test. % of immune cell subsets is presented as % of all PBMCs. Results: Most pts presented with ER- tumors (56%), measuring > 5cm (64%) and with nodal metastases (78%). After NAC, 16 pts (44%) achieved pathologic complete response (pCR). Analysis of preNAC PBMCs demonstrated a significantly higher number of B cells (8% vs 5%, p = 0.05) and effector memory CD8+ T cells (CD45RA-/CCR7-, 3 vs 1%, p = 0.02) in pts with pCR compared to those with residual disease. Of the B cell subsets, naïve B cells (CD24-/CD27-) were higher in pts who achieved pCR vs not (7% vs 4%, 0 = 0.04). Regarding clinical characteristics, cN+ pts at presentation exhibited a lower number of peripheral blood T cells compared to cN- pts (47% vs 63%, p = 0.03). Of the T cell subsets, overall CD4+ and naïve CD4+ T cells (CD45RA+/CCR7+) were lower in cN+ vs cN- pts (31% vs 45%, p = 0.05; and 11% vs 24%, p = 0.04). We also observed differences in CD56+/CD16- NK cells by ER status (ER- 1% vs ER+ 3%, p = 0.01), and a moderate negative correlation between age and % circulating CD8+ T cells (rho -0.4669, p = 0.004). Conclusions: Distinct peripheral blood immune cell profiles are observed in HER2+ BC at diagnosis, and are associated with response to T-based NAC and initial clinical characteristics. Notably, pts who later achieved pCR had a relative abundance of B cells and effector memory CD8+ T cells at diagnosis. These data suggest that immune cell phenotyping in peripheral blood may have potential as a biomarker to predict response to NAC in BC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qing Ye ◽  
Chao Zhou ◽  
Sisi Li ◽  
Jingjing Wang ◽  
Fei Liu ◽  
...  

AbstractExisting research suggests that the human immune system and immune cells are involved in the pathogenesis of nephrotic syndrome, but there is still a lack of direct evidence. This study tried to analyze the profiling of immune cells in the peripheral blood of steroid-sensitive nephrotic syndrome (SSNS) patients and steroid-resistant nephrotic syndrome (SRNS) patients before and after standard steroid treatment to clarify the immunological mechanism of nephrotic syndrome patients. The number and proportion of CD4 + T cells in patients with nephrotic syndrome remained unchanged. However, there is an imbalance of Th1 and Th2 and an excessive increase of Th17 cells. The number of CD8 + T cells and the number of effector CD8 + T cells in them increased significantly, but only in SSNS, the number of activated CD8 + T cells increased, and the number of activated Treg cells decreased significantly. Nephrotic syndrome patients also have B cell disorder, and it is more prominent in SSNS patients. Compared with the normal control, only the number of B cells and plasmablast in SSNS patients increased significantly (Z = − 2.20, P = 0.028). This study also observed that transitional B cells decreased in both SSNS and SRNS patients, but SSNS patients' decrease was lower than in SRNS patients. Compared with normal controls, monocytes in patients with nephrotic syndrome decreased significantly. The main reason was that Non-classical Monocyte decreased, while Classical Monocyte increased slightly. The total number of NK cells did not change, but the internal cell subgroups' composition occurred. Changes, realized as CD56hi NK cells increased, CD56low NK cells decreased; and the above trend is more evident in SSNS patients. Patients with nephrotic syndrome have immune disorders, including T cells, B cells, Monocytes, and NK cells. It can be confirmed that immune factors are involved in the pathogenesis of the nephrotic syndrome.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1944-1944
Author(s):  
Sabine Ivison ◽  
Aminia Kariminia ◽  
Megan Levings ◽  
Raewyn Broady ◽  
Tony Panzarella ◽  
...  

Abstract Abstract 1944 Background: The insidious onset and heterogeneous nature of chronic GVHD (cGVHD) impedes its diagnosis and treatment. Donor and graft characteristics, including those which lead to variations in specific cell populations infused at the time of transplantation, may predict the onset of cGVHD. Methods: This study evaluated graft lymphocyte populations of donors enrolled on the prospective Phase III Canadian BMT Group (CBMTG) clinical trial “A Randomized Multicentre Study Comparing G-CSF Mobilized Peripheral Blood and G-CSF Stimulated Bone Marrow in Patients Undergoing Matched Sibling Transplantation for Hematologic Malignancies (CBMTG 0601)”. Proportions of specific lymphocytes in donor grafts were associated with cGVHD in the recipient using logistic regression. Associations were significant if the corresponding p-value was less than 0.05 and the difference between the medians of the two groups was 50% lower than or twice as high as the control. Analyses were performed on G-CSF peripheral blood and bone marrow as a single population due to a data lock on the donor source randomization pending longer follow up. Recipients were considered cGVHD positive if diagnosed with extensive cGVHD and cGVHD negative if free of extensive cGVHD for a minimum of 12 months post transplant. Relapsed recipients and those who died without previous diagnosis of GVHD were excluded from analyses. Cell phenotypes and cytokine production of lymphocytes in the donor grafts were analyzed by flow cytometry in a set of panels that enabled identification of distinct NK, T and B cell subsets. After an initial analysis of 40 samples, a subset of immune populations, which significantly associated with recipient outcome, were analysed in an additional 20 samples. Results: Analyses of cGVHD- vs. cGVHD+ showed the following associations: higher proportions of IFNg-producing T helper cells and CD56bright NK cells in donor grafts were associated with a lack of cGVHD (p<0.005 and p<0.05, respectively). Higher graft proportions of a third population of cells, immature B cells (CD19+IgD−CD27−), were also associated with lack of cGVHD in the recipients (p<0.05). However, a multinomial logistic analysis which divided cGVHD+ outcomes into de novo and cGVHD developing after acute GVHD showed that this cell type actually associated with lack of de novo cGVHD only (see table for details). Conclusions: We have identified an IFNg-producing CD4+ T cell, an NK cell, and an immature B cell population in donor grafts that impact the development of cGVHD in the recipient. CD56bright NK cells are characteristically weakly cytotoxic but efficient producers of IFNg. The protective function of IFNg is supported by previous results from our lab showing that PBMCs of transplant recipients who did not develop cGVHD have higher levels of IFNg mRNA after stimulation (Rozmus et al, 2011). Donor IFNg polymorphisms, as well as graft source (bone marrow vs. peripheral blood), may cause differences in the immune cell proportions of donor grafts. The discovery that immature B cells are associated only with de novo cGVHD lends support to the concept that cGVHD following acute disease may differ biologically from de novo cGVHD. To better understand the role of these cells in disease pathology, more detailed functional assays of these lymphocyte subsets are required. All values are expressed as medians (first – third percentile range). *acute GVHD present, chronic GVHD absent (A+C-) recipients were excluded from the multivariate analyses due to low numbers (n=2). The values are expressed as percentages of the following lymphocytes: CD56bright NK cells; total CD3−, IFNg-producing T cells; total CD3+ and immature B cells; total CD19+. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2208-2208 ◽  
Author(s):  
Robert S. Nickel ◽  
Jeanne E. Hendrickson ◽  
John T. Horan ◽  
Aneesah P. Garrett ◽  
Jennifer M. Robertson ◽  
...  

Abstract Introduction Patients with sickle cell disease (SCD) are known to have altered immune systems. In the past, immunology studies in SCD patients have focused largely on splenic dysfunction and the increased risk of infection with encapsulated organisms. Increasingly, however, it is now being recognized that SCD patients also have evidence of abnormal immune activation with baseline chronic inflammation as well as high rates of red blood cell (RBC) alloimmunization and hematopoietic stem cell transplant (HSCT) graft rejection. We have previously demonstrated an increased risk of bone marrow transplant rejection with non-myeloablative conditioning in a SCD mouse model, with both increased T cells and natural killer (NK) cells implicated in this rejection. We have also previously shown that at baseline children with SCD have altered immune cell subsets. We now have expanded on this investigation of quantitative immune deviation in pediatric SCD by exploring how chronic transfusion (CT) or hydroxyurea (HU) therapy affects immunophenotype in a larger cohort of patients. Methods One hundred and eleven children (68 patients on CT only, 26 patients on HU only, 17 patients on neither CT nor HU) with SCD (SS or Sβ0) and 29 healthy, age-matched African American controls were recruited for this study. Exclusion criteria included recent illness or another disease associated with known abnormalities of the immune system. Flow cytometry was performed on samples from all participants to quantify the following immune cell populations: total white blood cells (WBC), total monocytes, total lymphocytes, T cells (total, CD4+, CD8+, naïve, central memory, effector memory, effector memory RA, and CD4+ T regulatory), B cells (total, naïve, and memory) and NK cells. Results SCD patients on CT and patients not receiving CT or HU (no CT/HU) had significantly increased total WBCs, granulocytes, monocytes, lymphocytes, T cells and B cells compared to healthy controls. Conversely, while SCD patients on HU also had mean counts that were elevated, they were not significantly greater than controls for any of these cell populations (Figure 1). Similarly, CD4+ T cells were significantly increased only in the CT and no CT/HU patients compared to controls (Figure 2). CD8+ T cells, however, were increased only in the CT group. CD4+ T cell subset analysis showed the most striking elevations in the CD4+ central memory and CD4+ effector memory (TEM) populations for both CT and no CT/HU patients compared to controls (Figure 3). CD4+ T regulatory cells were also increased in both of these groups. B cell analysis showed increased numbers of naïve but not memory B-cells in CT and no CT/HU patients. In distinct contrast to most populations that were elevated in CT patients, cytotoxic NK cells were uniquely increased only in no CT/HU patients. Conclusions Children with SCD have quantitative differences in many different immune cell populations compared to age and race matched healthy controls. HU treatment appears to bring the absolute number of these cell subsets closer to those of healthy controls, while CT does not. It is unclear at this point to what extent CT therapy itself or baseline patient characteristics leading to the need for CT contribute to these findings. Future work is investigating whether certain cell subset abnormalities are associated with particular therapeutic complications such as RBC alloimmunization or HSCT graft rejection. Better understanding the immunology of SCD may allow for targeted therapies to improve SCD transfusion support and HSCT outcomes. Disclosures: Off Label Use: Abstract includes information related to the use of hydroxyurea in children with sickle cell disease.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2096
Author(s):  
Celina L. Szanto ◽  
Annelisa M. Cornel ◽  
Sara M. Tamminga ◽  
Eveline M. Delemarre ◽  
Coco C. H. de Koning ◽  
...  

Despite intensive treatment, including consolidation immunotherapy (IT), prognosis of high-risk neuroblastoma (HR-NBL) is poor. Immune status of patients over the course of treatment, and thus immunological features potentially explaining therapy efficacy, are largely unknown. In this study, the dynamics of immune cell subsets and their function were explored in 25 HR-NBL patients at diagnosis, during induction chemotherapy, before high-dose chemotherapy, and during IT. The dynamics of immune cells varied largely between patients. IL-2- and GM-CSF-containing IT cycles resulted in significant expansion of effector cells (NK-cells in IL-2 cycles, neutrophils and monocytes in GM-CSF cycles). Nonetheless, the cytotoxic phenotype of NK-cells was majorly disturbed at the start of IT, and both IL-2 and GM-CSF IT cycles induced preferential expansion of suppressive regulatory T-cells. Interestingly, proliferative capacity of purified patient T-cells was impaired at diagnosis as well as during therapy. This study indicates the presence of both immune-enhancing as well as regulatory responses in HR-NBL patients during (immuno)therapy. Especially the double-edged effects observed in IL-2-containing IT cycles are interesting, as this potentially explains the absence of clinical benefit of IL-2 addition to IT cycles. This suggests that there is a need to combine anti-GD2 with more specific immune-enhancing strategies to improve IT outcome in HR-NBL.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4781-4781
Author(s):  
Jacek Rolinski ◽  
Agnieszka Bojarska-Junak ◽  
Iwona Hus ◽  
Anna Dmoszynska

Abstract TNF has been proposed to play a role in the regulation of growth and death of leukemic B-CLL cells. However, the biological effects of TNF on leukemic cells, as well as its role as a prognostic factor need to be further investigated. The aim of the study was to eevaluate the correlation of TNF and its receptors in peripheral blood (PB) and bone marrow (BM) with the stage of B-CLL and some other clinical parameters. PB and BM were taken from 44 newly diagnosed, untreated B-CLL. patients. The control group consisted of 20 healthy subjects. We used flow cytometry technique to assess the capability of T and B lymphocytes to produce TNF and ELISA method to measure plasma levels of TNF and their soluble receptors. We found, that PB and BM plasma TNF concentration in the patients was significantly higher than in the healthy control (2.61 pg/ml. vs 0.62 pg/ml; and 2.91 pg/ml vs 0.75 pg/ml, respectively p<0.001). TNF concentration in PB and BM was significantly higher in Rai stage III–IV than in early stages (p<0.01). There was a correlation between the PB and BM TNF level and lymphocytosis (p<0.005) and the total tumor mass (TTM) (p<0.0001). The PB and BM TNF concentration positively correlated with the percentage of T CD3+ lymphocytes producing intracellular TNF (p<0.01). The percentage of T cells from PB an BM expressing cytoplasmic TNF was significantly higher in patients (PB:39.11±16.97%; BM:40.73±18.19%) than in normal controls (PB:15.74±7.95%; BM:18.80±12.93%) (p< 0.00001; p<0.005, respectively). In PB and BM from B-CLL patients the percentage of CD3+ cells expressing intracellular TNF was significantly higher than the percentage of CD19+/TNF+ cells (p<0.0001). Besides, it was found that the percentage of T cells expressing cytoplasmic TNF positively correlated with the stage of disease (p<0.01). In PB positive correlation were found between the number of T CD3+/TNF+ cells and lymphocytosis (p<0.05) and TTM (p<0.001). The percentage of leukaemic B cells positive for TNF did not correlate with the stage of disease. There was increased expression of TNF-RI and TNF-RII in leukaemic B cells in comparison to normal B-cells was observed (p<0.0001). We found positive correlation between the number of CD5+ B lymphocytes and the levels of soluble TNF-RII (sTNF-RII) (p< 0.05). The sTNF-RII levels in PB and BM significantly correlated with the stage of disease acc. Rai (p<0.0001). Furthermore, the sTNF-RII concentration positively correlated with lymphocytosis and TTM (p<0.0001). These results strongly support the key role TNF in B-CLL pathogenesis. Our results suggest that TNF may function as growth factor for B-CLL cells. CD3+T cells may be the important source of this cytokine in advanced B-CLL. It seems that changes in T cells capability to produce cytoplasmic TNF are associated with disease progression. However, further studies are required to confirm the key role of TNF in B-CLL pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document