Investigations of Amino Acids in the 5-Formyltetrahydrofolate Binding Site of 5,10-Methenyltetrahydrofolate Synthetase from Mycoplasma pneumonia

2019 ◽  
Vol 38 (4) ◽  
pp. 409-418
Author(s):  
Casey Cooper ◽  
Matthew Bryant ◽  
Naomi Hogan ◽  
Timothy W. Johann
2012 ◽  
Vol 31 (6) ◽  
pp. 519-528 ◽  
Author(s):  
Meagan Tolley ◽  
Lydia Bickford ◽  
Kristen Clare ◽  
Timothy W. Johann

2012 ◽  
Vol 8 ◽  
pp. 1858-1866 ◽  
Author(s):  
Julia Meier ◽  
Kristin Kassler ◽  
Heinrich Sticht ◽  
Jutta Eichler

Based on the structure of the HIV-1 glycoprotein gp120 in complex with its cellular receptor CD4, we have designed and synthesized peptides that mimic the binding site of CD4 for gp120. The ability of these peptides to bind to gp120 can be strongly enhanced by increasing their conformational stability through cyclization, as evidenced by binding assays, as well as through molecular-dynamics simulations of peptide–gp120 complexes. The specificity of the peptide–gp120 interaction was demonstrated by using peptide variants, in which key residues for the interaction with gp120 were replaced by alanine or D-amino acids.


2021 ◽  
Author(s):  
◽  
Reem Hanna

<p>Peloruside A, a natural product isolated from the marine sponge Mycale hentscheli, is a microtubule-stabilising agent that has a similar mechanism of action to the anticancer drug paclitaxel and is cytotoxic to cultured mammalian cells. Peloruside appears to bind to a distinct site on mammalian tubulin that is different from that of the taxoid-site drugs. Because of the high sequence homology between yeast and mammalian tubulin, Saccharomyces cerevisiae (S. cerevisiae) was used as a model organism to characterise the peloruside-binding site with the aim of advancing our understanding about this site on mammalian tubulin. Wild type S. cerevisiae (BY4741) was sensitive to peloruside at uM concentrations; however, a strain that lacks the mad2 (Mitotic Arrest Deficient 2) gene showed increased sensitivity to the drug at much lower uM concentrations. This gene is a component of the spindle-assembly checkpoint complex that delays the onset of anaphase in cells with defects in mitotic spindle assembly. The main aims of this project were to define the binding site of peloruside A using yeast tubulin to see if microtubule function and/or morphology is altered in yeast by peloruside, and to identify any secondary drug targets "friends of the target" through chemical genetic interactions profiling (Homozygous deletion profiling microarray). Site-directed mutagenesis was used to mutate two conserved amino acids (A296T; R306H) known to confer resistance to peloruside in mammalian cells. Based on a published computer model of the peloruside binding site on mammalian tubulin, we also mutated three other amino acids, two that were predicted to affect peloruside binding (Q291M and N337L), and one that was predicted to affect laulimalide binding but have little affect on peloruside binding (V333W). We also included a negative control that was predicted to have no effect on peloruside binding (R282Q) and would affect epothilone binding. We found that of the six point mutations, only Q291M failed to confer resistance in yeast and instead it increased the inhibition to the drug. Using a bud index assay, confocal microscopy, and flow cytometry, 40-50 uM peloruside was shown to block cells in G2/M of the cell cycle, confirming a direct action of the drug on microtubule function. Homozygous profiling (HOP) microarray analysis of a deletion mutant set of yeast genes was also carried out to identify gene products that interact with peloruside in order to link the drug to specific networks or biochemical pathways in the cells. From site-directed mutagenesis, we concluded that peloruside binds to yeast B-tubulin in the region predicted by the published model of the binding site, and therefore mapping the site on yeast tubulin could provide useful information about the mammalian binding site for peloruside. The bud index, flow cytometry, and confocal microscopy experiments provided further evidence that peloruside interacts with yeast tubulin. From HOP we found that peloruside has roles in the cell cycle, as expected, and has effects on protein transport, secretion, cell wall synthesis, and steroid biosynthesis pathways.</p>


2021 ◽  
Vol 25 (4) ◽  
pp. 497-502
Author(s):  
D. Shehu ◽  
S Danlami ◽  
M. Ya’u ◽  
A. Babandi ◽  
H.M. Yakasai ◽  
...  

Glutathione s-transferases(GSTs) are enzymes involved in the conjugation and deactivation of various xenobiotics including drugs. Thisin-silico study was undertaken in order to investigate the interaction between beta-class glutathione s-transferase and five selected antibiotics, namely; ampicillin, tetracycline, chloramphenicol, ciprofloxacin and cephalexin using molecular docking study. RaptorX server was used to predict the amino acids involved at the binding sitewhile molecular docking study was employed in order to investigate the binding interactions.RaptorX predicted several amino acids which were different from the ones observed in molecular docking because of the variability in the substrate binding site of GSTs however, all the amino acids predicted by RaptorX were also found to be involved in the GSH binding.Lys107, Phe109, Ser110, Leu113, Trp114, His115 and Arg123, Leu168 were the amino acids involved in the binding of various antibiotics to the substrate binding site of the protein while Ala9, Cys10, Leu32, Tyr51, Val52, Pro53, Glu65 and Ala66were involved in the binding of the co-substrate GSH to the binding site of the protein. The results indicated that all the antibiotics showed a good binding affinity with the beta class GST and are therefore capable of deactivating the drugs. With these, finding a beta class GST inhibitors alongside antibiotics during a treatment of diseases will be of beneficial in the current fight against antibiotic resistance.


1992 ◽  
Vol 12 (4) ◽  
pp. 1893-1902
Author(s):  
B C Laurent ◽  
X Yang ◽  
M Carlson

The Saccharomyces cerevisiae SNF2 gene affects the expression of many diversely regulated genes and has been implicated in transcriptional activation. We report here the cloning and characterization of STH1, a gene that is homologous to SNF2. STH1 is essential for mitotic growth and is functionally distinct from SNF2. A bifunctional STH1-beta-galactosidase protein is located in the nucleus. The predicted 155,914-Da STH1 protein is 72% identical to SNF2 over 661 amino acids and 46% identical over another stretch of 66 amino acids. Both STH1 and SNF2 contain a putative nucleoside triphosphate-binding site and sequences resembling the consensus helicase motifs. The large region of homology shared by STH1 and SNF2 is conserved among other eukaryotic proteins, and STH1 and SNF2 appear to define a novel family of proteins related to helicases.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 25 ◽  
Author(s):  
Xue Yang ◽  
Jinchi Wei ◽  
Zhihai Wu ◽  
Jie Gao

Glutathione S-transferases (GSTs)—an especially plant-specific tau class of GSTs—are key enzymes involved in biotic and abiotic stress responses. To improve the stress resistance of crops via the genetic modification of GSTs, we predicted the amino acids present in the GSH binding site (G-site) and hydrophobic substrate-binding site (H-site) of OsGSTU17, a tau class GST in rice. We then examined the enzyme activity, substrate specificity, enzyme kinetics and thermodynamic stability of the mutant enzymes. Our results showed that the hydrogen bonds between Lys42, Val56, Glu68, and Ser69 of the G-site and glutathione were essential for enzyme activity and thermal stability. The hydrophobic side chains of amino acids of the H-site contributed to enzyme activity toward 4-nitrobenzyl chloride but had an inhibitory effect on enzyme activity toward 1-chloro-2,4-dinitrobenzene and cumene hydroperoxide. Different amino acids of the H-site had different effects on enzyme activity toward a different substrate, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Moreover, Leu112 and Phe162 were found to inhibit the catalytic efficiency of OsGSTU17 to 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, while Pro16, Leu112, and Trp165 contributed to structural stability. The results of this research enhance the understanding of the relationship between the structure and function of tau class GSTs to improve the abiotic stress resistance of crops.


1992 ◽  
Vol 175 (5) ◽  
pp. 1373-1379 ◽  
Author(s):  
H Jiang ◽  
F A Robey ◽  
H Gewurz

Studies were initiated to localize the C-reactive protein (CRP) binding site on the collagen-like region (CLR) of C1q. CRP bound preferentially to the A chain of reduced C1q, in contrast to aggregated immunoglobulin G (Agg-IgG), which reacted preferentially with the C chain. A group of C1q A chain peptides, including peptides identical to residues 81-97, 76-92, and 14-26, respectively, were synthesized from predicted binding regions. Peptide 76-92 contained two proximal lysine groups, and peptide 14-26 contained four proximal arginine groups. CRP-trimers and CRP-ligand complexes did not bind to immobilized peptide 81-97, but bound avidly to immobilized peptides 76-92 and 14-26. Agg-IgG did not bind to any of the peptides. Peptide 76-92 partially, and peptide 14-26 completely, inhibited binding of CRP to intact C1q. Peptide 14-26 also blocked C consumption initiated by CRP, but not by IgG. Replacement of the two prolines with alanines, or scrambling the order of the amino acids, resulted in loss of ability of peptide 14-26 to inhibit C1q binding and C activation by CRP, indicating a sequence specificity, and not a charge specificity alone, as the basis for the inhibitory activity of the peptide. Similar investigations with scrambled peptides showed a sequence specificity for the effects of peptide 76-92 as well. DNA and heparin inhibited binding of CRP trimers to intact C1q, as well as to each peptide 14-26 and 76-92, suggesting involvement of these regions in C1q-CLR binding reactions generally. Collectively, these data identify two cationic regions within residues 14-26 and 76-92 of the C1q A chain CLR as sites through which CRP binds and activates the classical C pathway, and suggest that these residues represent significant regions for C1q CLR binding reactions generally. To our knowledge, this represents the first delineation of sites on C1q through which binding and activation of the classical C pathway can occur.


Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1811-1819 ◽  
Author(s):  
D Scandella ◽  
GE Gilbert ◽  
M Shima ◽  
H Nakai ◽  
C Eagleson ◽  
...  

The finding that human factor VIII (fVIII) inhibitor antibodies with C2 domain epitopes interfere with the binding of fVIII to phosphatidylserine (PS) suggested that this is the mechanism by which they inactivate fVIII. We constructed a recombinant C2 domain polypeptide and demonstrated that it bound to all six human inhibitors with fVIII light chain specificity. Thus, some antibodies within the polyclonal anti-light chain population require only amino acids within C2 for binding. Recombinant C2 also partially or completely neutralized the inhibitor titer of these plasmas, demonstrating that anti-C2 antibodies inhibit fVIII activity. Immunoblotting of a series of C2 deletion polypeptides, expressed in Escherichia coli, with inhibitor plasmas showed that the epitopes for human inhibitors consist of a common core of amino acid residues 2248 through 2312 with differing extensions for individual inhibitors. The epitope of inhibitory monoclonal antibody (MoAb) ESH8 was localized to residues 2248 through 2285. Three human antibodies and anti-C2 MoAb NMC-VIII/5 bound to a synthetic peptide consisting of amino acids 2303 through 2332, a PS- binding site, but MoAb ESH8 did not. These antibodies also inhibited the binding of fVIII to synthetic phospholipid membranes of PS and phosphatidylcholine, confirming that the blocked epitopes contribute to membrane binding as well as binding to PS. In contrast, MoAb ESH8 did not inhibit binding. As the maximal function of activated fVIII in the intrinsic factor Xase complex requires its binding to a phospholipid membrane, we propose that fVIII inhibition by anti-C2 antibodies is related to the overlap of their epitopes with the PS-binding site. MoAb ESH8 did not inhibit fVIII binding to PS-containing membranes, suggesting the existence of a second mechanism of fVIII inhibition by anti-C2 antibodies.


Sign in / Sign up

Export Citation Format

Share Document