EMD analysis on the impact of temperature, volume fraction and molecular weight on the thermal conductivity of water-based nanofluids

Author(s):  
S. Ramesh Krishnan ◽  
V. N. Narayanan Namboothiri
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hadi Mahdizadeh ◽  
Nor Mariah Adam

Purpose This paper aims to investigate increasing heat transfer in bend tube 90° by fluid injection using nano fluid flow that was performed by expending varying Reynolds number. This paper studies the increased heat transfer in the bent tube that used some parameters to examine the effects of volume fraction, nanoparticle diameter, fluid injection, Reynolds number on heat transfer and flow in a bend pipe. Design/methodology/approach Designing curved tubes increases the thermal conductivity amount between fluid and wall. It is used the finite volume method and simple algorithms to solve the conservation equations of mass, momentum and energy. The results showed that the nanoparticles used in bent tube transfusion increase the heat transfer performance by increasing the volume fraction; it has a direct impact on enhancing the heat transfer coefficient. Findings Heat transfer coefficient enhanced 1.5% when volume fraction increased from 2 % to 6%, the. It is due to the impact of nanoparticles on the thermal conductivity of the fluid. The fluid is injected into the boundary layer flow due to jamming that enhances heat transfer. Curved lines used create a centrifugal force due to the bending and lack of development that increase the heat transfer. Originality/value This study has investigated the effect of injection of water into a 90° bend before and after the bend. Specific objectives are to analyze effect of injection on heat transfer of bend tube and pressure drop, evaluate best performance of mixing injection and bend in different positions and analyze effect of nano fluid volume fraction on injection.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 830
Author(s):  
Gabriella Bognár ◽  
Krisztián Hriczó

The steady two-dimensional boundary layer flow past a stretching flat sheet in a water-based ferrofluid is investigated. The spatially varying magnetic field is created by two line currents. The similarity method is applied to transform the governing equations into a system of coupled ordinary differential equations. Numerical investigations are performed for ferrofluids, the suspensions of water, and three types of ferroparticles (magnetite, cobalt ferrite, and Mn-Zn ferrite). The impact of the solid volume fraction, the surface stretching parameter, and the ferromagnetic coefficient on the dimensionless velocity and temperature profiles, the skin friction coefficient, and the local Nusselt number are analysed for the three types of ferrofluid.


Author(s):  
Senthil A. G. Singaravelu ◽  
Xuejiao Hu ◽  
Kenneth E. Goodson

Increasing power dissipation in today’s microprocessors demands thermal interface materials (TIMs) with lower thermal resistances. The TIM thermal resistance depends on the TIM thermal conductivity and the bond line thickness (BLT). Carbon Nanotubes (CNTs) have been proposed to improve the TIM thermal conductivity. However, the rheological properties of TIMs with CNT inclusions are not well understood. In this paper, the transient behavior of the BLT of the TIMs with CNT inclusions has been measured under controlled attachment pressures. The experimental results show that the impact of CNT inclusions on the BLT at low volume fractions (up to 2 vol%) is small; however, higher volume fraction of CNT inclusions (5 vol%) can cause huge increase in TIM thickness. Although thermal conductivities are higher for higher CNT fractions, a minimum TIM resistance exists at some optimum CNT fraction for a given attachment pressure.


2015 ◽  
Vol 1128 ◽  
pp. 384-389
Author(s):  
Madalina Georgiana Moldoveanu ◽  
Alina Adriana Minea

Application of nanoparticles provides an effective way of improving heat transfer characteristics of fluids. Particles less than 100 nm in diameter exhibit different properties from those of conventional solids. Compared with micron-sized particles, nanophase powders have much larger relative surface areas and a great potential for heat transfer enhancement. Some researchers tried to suspend nanoparticles into fluids to form high effective heat transfer fluids. Some preliminary experimental results showed that increase in thermal conductivity of approximately 60% can be obtained for some nanofluids consisting of water and 5 vol% CuO nanoparticles. So, the thermal conductivity of nanofluid was found to be strongly dependent on the nanoparticle volume fraction. So far it has been an unsolved problem to develop a sophisticated theory to predict thermal conductivity of nanofluids, although there are some semi empirical correlations to calculate the apparent conductivity of two-phase mixture. In this article, several correlations for predicting the nanofluid thermal conductivity will be compared and results will be discussed for three water based nanofluids.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
W. Y. Lai ◽  
S. Vinod ◽  
P. E. Phelan ◽  
Ravi Prasher

Nanofluids are colloidal solutions, which contain a small volume fraction of suspended submicron particles or fibers in heat transfer liquids such as water or glycol mixtures. Compared with the base fluid, numerous experiments have generally indicated an increase in effective thermal conductivity and a strong temperature dependence of the static effective thermal conductivity. However, in practical applications, a heat conduction mechanism may not be sufficient for cooling high heat dissipation devices such as microelectronics or powerful optical equipment. Thus, thermal performance under convective heat transfer conditions becomes of primary interest. We report here the heat transfer coefficient h in both developing and fully developed regions by using water-based alumina nanofluids. Our experimental test section consists of a single 1.02-mm diameter stainless steel tube, which is electrically heated to provide a constant wall heat flux. Both pressure drop and temperature differences are measured, but mostly here we report our h measurements under laminar flow conditions. An extensive characterization of the nanofluid samples, including pH, electrical conductivity, particle sizing, and zeta potential, is also documented. The measured h values for nanofluids are generally higher than those for pure water. In the developing region, this can be at least partially explained by Pr number effects.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Waqar A. Khan ◽  
Richard Culham ◽  
Rizwan Ul Haq

The MHD flow and heat transfer from water functionalized CNTs over a static/moving wedge are studied numerically. Thermal conductivity and viscosity of both single and multiple wall carbon nanotubes (CNTs) within a base fluid (water) of similar volume are investigated to determine the impact of these properties on thermofluid performance. The governing partial differential equations are converted into nonlinear, ordinary, and coupled differential equations and are solved using an implicit finite difference method with quasi-linearization techniques. The effects of volume fraction of CNTs and magnetic and wedge parameters are investigated and presented graphically. The numerical results are compared with the published data and are found to be in good agreement. It is shown that the magnetic field reduces boundary layer thickness and increases skin friction and Nusselt numbers. Due to higher density and thermal conductivity, SWCNTs offer higher skin friction and Nusselt numbers.


Author(s):  
Li Fei Chen ◽  
Huaqing Xie ◽  
Wei Yu ◽  
Yang Li

We report a method to prepare surfactant-free water based nanofluids containing multi-walled carbon nanotubes (CNTs). The as prepared CNTs with hard dispersibility, after being cut by mechanical ball-milling approach following strong acid treatment, can be directly dispersed into water. The thermal conductivity of the nanofluids is optimized by controlling the CNT length and straightness. It is realized by changed the ball-milling times. The thermal conductivity enhancement of water based CNT nanofluids with volume fraction of 1% attains 29.5% by controlling the CNT length and straightness when the temperature is 63.9°C.


Author(s):  
Mohsen Sharifpur ◽  
Tshimanga Ntumba ◽  
Josua P. Meyer

There is a lack of reported research on comprehensive hybrid models for the effective thermal conductivity of nanofluids that takes into consideration all major mechanisms and parameters. The major mechanisms are the nanolayer, Brownian motion and clustering. The recognized important parameters can be the volume fraction of the nanoparticles, temperature, particle size, thermal conductivity of the nanolayer, thermal conductivity of the base fluid, PH of the nanofluid, and the thermal conductivity of the nanoparticle. Therefore, in this work, a parametric analysis of effective thermal conductivity models for nanofluids was done. The impact of the measurable parameters, like volume fraction of the nanoparticles, temperature and the particle size for the more sited models, were analyzed by using alumina-water nanofluid. The result of this investigation identifies the lack of a hybrid equation for the effective thermal conductivity of nanofluids and, consequently, more research is required in this field.


2011 ◽  
Vol 110-116 ◽  
pp. 1879-1885
Author(s):  
Hyo Jun Ha ◽  
Ji Hun Park ◽  
Seok Pil Jang

In this paper, thermal characteristics of miniature heat pipes with grooved wick and water-based multiwalled carbon nanotubes(MWCNT) nanofluids(0.1, 0.2, and 0.5 vol.%) as working fluids are experimentally investigated. The thermal conductivity and thermal resistances are measured and compared with those of DI water. The thermal conductivity of water-based MWCNT nandfluids is enhanced by up to 29% compared with that of DI water. Experiments are performed under the same evaporation temperature condition. The thermal resistance of heat pipe is reduced from 30% to 35.2% as the volume fraction of nanoparticles inceasing from 0.1% to 0.5%. Finally, based on the experimental results, we present the reduction of the thermal resistances of the heat pipes compared with conventional heat pipes cannot be explained by only the thermal conductivity of water-based MWCNT nanofluids.


2018 ◽  
Vol 240 ◽  
pp. 01015
Author(s):  
Michał Kubiś ◽  
Mirosław Seredyński ◽  
Łukasz Cieślikiewicz ◽  
Tomasz Wiśniewski ◽  
Anna Boczkowska

The physical properties of epoxy based carbon reinforced composites are highly anisotropic due to their directional structure and dependent on the manufacturing process parameters. Thermal conductivity was found to be dependent on the void volume fractions, which appear as a result of the insufficient vacuum level. In the proposed paper the multi-scale computational model of heat transfer across the carbon fiber-epoxy resin composite is proposed. The meso-scale effective thermal conductivities are determined with analytical formulae for isotropic and anisotropic media, the latter takes into account thermal resistance at the interface of fibres and epoxy resin. Proposed model is utilized to determine the effective thermal conductivity in the direction perpendicular to plies of composite. The influence of void fractions and the thickness of the composite on the effective thermal conductivity is investigated. The numerical outcomes underestimate the real variation in conductivity, which can be caused by change in carbon volume fraction of samples manufactured at different vacuum levels which was not considered in numerical computation.


Sign in / Sign up

Export Citation Format

Share Document