Bond Line Thickness of Thermal Interface Materials With Carbon Nanotubes

Author(s):  
Senthil A. G. Singaravelu ◽  
Xuejiao Hu ◽  
Kenneth E. Goodson

Increasing power dissipation in today’s microprocessors demands thermal interface materials (TIMs) with lower thermal resistances. The TIM thermal resistance depends on the TIM thermal conductivity and the bond line thickness (BLT). Carbon Nanotubes (CNTs) have been proposed to improve the TIM thermal conductivity. However, the rheological properties of TIMs with CNT inclusions are not well understood. In this paper, the transient behavior of the BLT of the TIMs with CNT inclusions has been measured under controlled attachment pressures. The experimental results show that the impact of CNT inclusions on the BLT at low volume fractions (up to 2 vol%) is small; however, higher volume fraction of CNT inclusions (5 vol%) can cause huge increase in TIM thickness. Although thermal conductivities are higher for higher CNT fractions, a minimum TIM resistance exists at some optimum CNT fraction for a given attachment pressure.

Author(s):  
Xuejiao Hu ◽  
Senthil Govindasamy ◽  
Kenneth E. Goodson

Thermal interface materials (TIMs) are widely used in electronics packaging. Increasing heat generation rates require lower values of the TIM thermal resistance, which depends on the material thermal conductivity and the TIM thickness, or the bond line thickness (BLT). The variation of the TIM thickness is not well understood. The major difficulty comes from the complexity of TIMs as condensed particle systems, especially when the TIM thickness is squeezed to several multiples of the filler particle diameter. This confined heterogeneous structure makes the behavior of TIMs different from that of homogeneous fluids. In this study, we propose a two-medium model for the BLT. The variation of BLT with attachment pressure is modeled using two parameters: the viscidity of the fluids and the interactions of particles. The predictions are compared with the measurements for TIMs made of aluminum oxide particles (sizes: 0.6–6 microns, volume fractions: 30%–50%) and silicon oil (kinematic viscosity: 100 cst and 1000 cst). Reasonable agreement is obtained for different applied pressures. Results indicate that the impact of the particle interactions is an important factor governing the variation of the TIM BLT, especially when the BLT is small.


Author(s):  
Gary Lehmann ◽  
Hao Zhang ◽  
Arun Gowda ◽  
David Esler

Measurements and modeling of the thermal resistance of thin (< 100 microns) bond-lines are reported for composite thermal interface materials (TIMs). The composite TIMs consist of alumina particles dispersed in a polymer matrix to form six different adhesive materials. These model TIMs have a common matrix material and are distinguished by their particle size distributions. Bond-lines are formed in a three-layer assembly consisting of a substrate-TIM-substrate structure. The thermal resistance of the bond-line is measured, as a function of bond-line thickness, using the laser flash-technique. A linear variation of resistance with bond-line thickness is observed; Rbl = β · Lbl + Ro. A model is presented that predicts the effective thermal conductivity of the composite as a function of the particle and matrix conductivity, the particle-matrix surface conductance, the particle volume fraction and the particle size distribution. Specifically a method is introduced to account for a broad, continuous size distribution. A particle-matrix surface conductance value of ∼10W/mm2K is found to give good agreement between the measured and predicted effective thermal conductivity values of the composite TIMs.


Author(s):  
Ravi S. Prasher ◽  
Jim Shipley ◽  
Suzana Prstic ◽  
Paul Koning ◽  
Jin-Lin Wang

Particle laden polymers are one of the most prominent thermal interface materials (TIM) used in electronics cooling. Most of the research groups have primarily dealt with the understanding of the thermal conductivity of these types of TIMs. Thermal resistance is not only dependent on the thermal conductivity but also on the bond line thickness (BLT) of these TIMs. It is not clear that which material property(s) of these particle laden TIMs affects the BLT. This paper discusses the experimental measurement of rheological parameters such as non-Newtonian strain rate dependent viscosity and yield stress for 3 different particle volume fraction and 3 different base polymer viscosity materials. These rheological and BLT measurements vs. pressure will be used to model the BLT of particle-laden systems for factors such as volume fraction.


Author(s):  
S. Mark Zhang ◽  
Diane Swarthout ◽  
Thomas Noll ◽  
Susan Gelderbloom ◽  
Douglas Houtman ◽  
...  

Thermal interface materials (TIM) play a very important role in effectively dissipating unwanted heat generated in electronic devices. This requires that the TIM should have a high bulk thermal conductivity, intimate contact with the substrate surfaces, and the capability to form a thin bond line. In designing new TIMs to meet these industry needs, alkyl methyl siloxane (AMS) waxes have been studied as phase change matrices. AMS waxes are synthesized by grafting long chain alpha-olefins on siloxane polymers. The melting point range of the silicone wax is determined by the hydrocarbon chain length and the siloxane structure. When the AMS wax is mixed with thermally conductive fillers such as alumina, a phase change compound is created. The bulk thermal conductivities of the phase change material (PCM) are reduced as they go through the phase change transition from solid to liquid. By coating the PCM onto an aluminum mesh, both the mechanical strength and the thermal conductivity are drastically improved. The thermal conductivity increases from 4.5 W/mK for the PCM without aluminum support to 7.5 W/mK with the supporting mesh. The thermal resistance of the aluminum-supported sheet at a bond line thickness of 115 microns has been found to be ∼0.24 cm2-C/W. Applying pressure at the time of application has a positive effect on the thermal performance of the PCM. Between contact pressures of 5–80 psi, the thermal resistance decreases as the pressure increases. The weak mechanical strength of the phase change material turns out to be a benefit when ease of rework and the effects of shock and vibration during shipping and handling are considered. A stud pull test of the aluminum mesh-supported PCM shows an average of 13 psi stress at the peak of the break.


Author(s):  
Piyas Chowdhury ◽  
Kamal Sikka ◽  
Anuja De Silva ◽  
Indira Seshadri

Thermal interface materials (TIMs), which transmit heat from semiconductor chips, are indispensable in today’s microelectronic devices. Designing superior TIMs for increasingly demanding integration requirements, especially for server-level hardware with high power density chips, remains a particularly coveted yet challenging objective. This is because achieving desired degrees of thermal-mechanical attributes (e.g. high thermal conductivity, low elastic modulus, low viscosity) poses contradictory challenges. For instance, embedding thermally conductive fillers (e.g. metallic particles) into a compliant yet considerably less conductive matrix (e.g. polymer) enhances heat transmission, however at the expense of overall compliance. This leads to extensive trial-and-error based empirical approaches for optimal material design. Specifically, high volume fraction filler loading, role of filler size distribution, mixing of various filler types are some outstanding issues that need further clarification. To that end, we first forward a generic packing algorithm with ability to simulate a variety of filler types and distributions. Secondly, by modeling the physics of heat/force flux, we predict effective thermal conductivity, elastic modulus and viscosity for various packing cases.


Sign in / Sign up

Export Citation Format

Share Document