Methylation status and protein expression of RASSF1A in breast cancer patients

2013 ◽  
Vol 41 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Hoda A. Hagrass ◽  
Heba F. Pasha ◽  
Mohamed A. Shaheen ◽  
Eman H. Abdel Bary ◽  
Rasha Kassem
2021 ◽  
Vol 12 ◽  
Author(s):  
Sadaf ◽  
Naseem Akhter ◽  
Raed A. Alharbi ◽  
Abdulmajid A. A. Sindi ◽  
Mohammad Zeeshan Najm ◽  
...  

Background:FOXP3 gene, known to be a potential tumor suppressor, has been identified to interact with HER2 in mammary cancer. Moreover, the high expression of FOXP3 serves as a good predictor of the survival of patients in breast cancer, prostate cancer, and gastric cancer. The expression and epigenetic alterations were evaluated in female breast cancer patients.Material and Methods: Expression studies at the mRNA level and protein level were conducted in 140 breast cancer cases by real-time PCR and immunohistochemistry, respectively. Epigenetic studies were also conducted by analyzing the methylation status at the promoter region of the gene using MS-PCR.Results:FOXP3 mRNA expression and protein expression were downregulated in breast cancer patients. The absence of FOXP3 protein expression is significantly associated with promoter methylation, where 70 methylated cases exhibited protein loss (70/95, 73.6%). Statistically, we also found a significant correlation between FOXP3 protein expression and TNM stage, promoter methylation, and histological grade. The methylated FOXP3 cases that did not express protein were also significantly associated with positive lymph node metastasis and HER-2 status.Conclusion: The expression profile of FOXP3 may serve as a prognostic factor. In short, FOXP3 may stand in the most crucial list of biomarkers for breast cancer, bringing compelling results in terms of treatment and management of the disease.


Author(s):  
Amal Ramadan ◽  
Maha Hashim ◽  
Amr Abouzid ◽  
Menha Swellam

Abstract Background Aberrant DNA methylation of phosphatase and tensin homolog (PTEN) gene has been found in many cancers. The object of this study was to evaluate the clinical impact of PTEN methylation as a prognostic marker in breast cancer. The study includes 153 newly diagnosed females, and they were divided according to their clinical diagnosis into breast cancer patients (n = 112) and females with benign breast lesion (n = 41). A group of healthy individuals (n = 25) were recruited as control individuals. Breast cancer patients were categorized into early stage (0–I, n = 48) and late stage (II–III, n = 64), and graded into low grade (I–II, n = 42) and high grade (III, n = 70). Their pathological types were invasive duct carcinoma (IDC) (n = 66) and duct carcinoma in situ (DCI) (n = 46). Tumor markers (CEA and CA15.3) were detected using ELISA. DNA was taken away from the blood, and the PTEN promoter methylation level was evaluated using the EpiTect Methyl II PCR method. Results The findings revealed the superiority of PTEN methylation status as a good discriminator of the cancer group from the other two groups (benign and control) with its highest AUC and increased sensitivity (96.4%) and specificity (100%) over tumor markers (50% and 84% for CEA and 49.1% and 86.4% for CA15.3), respectively. The frequency of PTEN methylation was 96.4% of breast cancer patients and none of the benign and controls showed PTEN methylation and the means of PTEN methylation (87 ± 0.6) were significantly increased in blood samples of breast cancer group as compared to both benign and control groups (25 ± 0.7 and 12.6 ± 0.3), respectively. Methylation levels of PTEN were higher in the blood of patients with ER-positive than in patients with ER-negative cancers (P = 0.007) and in HER2 positive vs. HER2 negative tumors (P = 0.001). The Kaplan-Meier analysis recognizes PTEN methylation status as a significant forecaster of bad progression-free survival (PFS) and overall survival (OS), after 40 months follow-up. Conclusions PETN methylation could be supposed as one of the epigenetic aspects influencing the breast cancer prognosis that might foretell more aggressive actions and worse results in breast cancer patients.


2021 ◽  
Vol 22 (10) ◽  
pp. 5382
Author(s):  
Pei-Yi Chu ◽  
Hsing-Ju Wu ◽  
Shin-Mae Wang ◽  
Po-Ming Chen ◽  
Feng-Yao Tang ◽  
...  

(1) Background: methionine cycle is not only essential for cancer cell proliferation but is also critical for metabolic reprogramming, a cancer hallmark. Hepatic and extrahepatic tissues methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A that catalyze the formation of S-adenosylmethionine (SAM), the principal biological methyl donor. Glycine N-methyltransferase (GNMT) further utilizes SAM for sarcosine formation, thus it regulates the ratio of SAM:S-adenosylhomocysteine (SAH). (2) Methods: by analyzing the TCGA/GTEx datasets available within GEPIA2, we discovered that breast cancer patients with higher MAT2A had worse survival rate (p = 0.0057). Protein expression pattern of MAT1AA, MAT2A and GNMT were investigated in the tissue microarray in our own cohort (n = 252) by immunohistochemistry. MAT2A C/N expression ratio and cell invasion activity were further investigated in a panel of breast cancer cell lines. (3) Results: GNMT and MAT1A were detected in the cytoplasm, whereas MAT2A showed both cytoplasmic and nuclear immunoreactivity. Neither GNMT nor MAT1A protein expression was associated with patient survival rate in our cohort. Kaplan–Meier survival curves showed that a higher cytoplasmic/nuclear (C/N) MAT2A protein expression ratio correlated with poor overall survival (5 year survival rate: 93.7% vs. 83.3%, C/N ratio ≥ 1.0 vs. C/N ratio < 1.0, log-rank p = 0.004). Accordingly, a MAT2A C/N expression ratio ≥ 1.0 was determined as an independent risk factor by Cox regression analysis (hazard ratio = 2.771, p = 0.018, n = 252). In vitro studies found that breast cancer cell lines with a higher MAT2A C/N ratio were more invasive. (4) Conclusions: the subcellular localization of MAT2A may affect its functions, and elevated MAT2A C/N ratio in breast cancer cells is associated with increased invasiveness. MAT2A C/N expression ratio determined by IHC staining could serve as a novel independent prognostic marker for breast cancer.


2019 ◽  
Vol 35 (6) ◽  
Author(s):  
Amena Rahim ◽  
Muhammad Afzal ◽  
Abdul Khaliq Naveed

Objective: To evaluate the association of miR-196a rs11614913 C/T genetic variation and its target gene annexin A1 mRNA expression with breast cancer risk in Pakistani female ethnicities. Methods: This case control study, conducted from March 2017 to November 2018 included 295 breast cancer patients, 295 controls of three Pakistani ethnicities and archived 100 samples of cohort group for genotyping and expression profiling. Genotyping of miR-196a (rs11614913 C/T) was done by ARMS PCR technique. Annexin-A1 (ANXA1) mRNA expression was measured with qRT-PCR and detection of protein expression of ANXA1 was done by immunohistochemistry. Results: CC homozygous genotype of miR-196a rs11614913 was present in 81.4% of cases and 73.9% controls. C/T polymorphism was found to be significantly associated with decrease risk of breast cancer (OR=0.25 (0.11- 0.58, p <0.05). Similar trend was seen with the minor T allele (OR=0.55 (0.39-0.77, p <0.05, and both dominant and recessive models (OR=0.64; p=0.02 and OR=0.26, p=0.00). In the KPK ethnic group significant decrease association with breast cancer risk was observed (OR= 0.22 (0.09-0.53, p < 0.05). Immunohistochemical staining showed loss of ANXA1 protein expression in 72 samples, and significant association was observed with pathological type p=0. 00 and triple negative receptor status p=0.03 and with genotypes of miR-196a p=0.00. Increase relative expression of 2.81± .88 by qPCR analysis of ANXA1 mRNA was noted with TT genotype. Conclusions: Our results demonstrate that miR-196a rs11614913 C/T polymorphism is associated with a decreased risk and loss of protein expression in breast cancer in the Pakistani population. doi: https://doi.org/10.12669/pjms.35.6.1322 How to cite this:Rahim A, Afzal M, Naveed AK. Genetic polymorphism of miRNA-196a and its target gene annexin-A1 expression based on ethnicity in Pakistani female breast cancer patients. Pak J Med Sci. 2019;35(6):1598-1604. doi: https://doi.org/10.12669/pjms.35.6.1322 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Breast Care ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Kheirollah Yari ◽  
Zohreh Rahimi

Background: We aimed to determine the promoter methylation status of the retinoic acid receptor-beta 2 (RARβ2) gene among breast cancer patients and to review relevant studies in this field in various populations. Methods: We analyzed 400 samples which comprised blood specimens from 102 breast cancer patients, 102 first-degree female relatives of patients, 100 cancer-free females, 48 breast cancer tissues, and 48 adjacent normal breast tissues from the same patients. The RARβ2 methylation status was determined using methylation-specific polymerase chain reaction (MSP) and DNA sequencing methods. Results: The presence of combined partially methylated (MU) and fully methylated (MM) forms of the RARβ2 gene (MU+MM) in the blood of patients was associated with susceptibility to breast cancer (odds ratio = 4.7, p = 0.05). A significantly higher frequency of the MM genotype was observed in cancer tissue (10.4%) compared to matched adjacent normal breast tissue (0%) (p = 0.02). Conclusion: We found a higher frequency of RARβ2 gene methylation in the blood and cancer tissues of patients compared to the blood of controls and adjacent normal breast tissues. The survey of studies on various populations demonstrated a higher RARβ2 methylation frequency in breast cancer patients compared to normal individuals, and many reports suggest a significant association between hypermethylation of the gene and susceptibility to breast cancer.


2012 ◽  
Vol 17 (6) ◽  
pp. 766-774 ◽  
Author(s):  
Chandra Bartholomeusz ◽  
Ana M. Gonzalez‐Angulo ◽  
Ping Liu ◽  
Naoki Hayashi ◽  
Ana Lluch ◽  
...  

2020 ◽  
Vol 9 (10) ◽  
pp. 3153
Author(s):  
Pei-Yi Chu ◽  
Shin-Mae Wang ◽  
Po-Ming Chen ◽  
Feng-Yao Tang ◽  
En-Pei Isabel Chiang

(1) Background: Tumor hypoxia leads to metastasis and certain immune responses, and interferes with normal biological functions. It also affects glucose intake, down-regulates oxidative phosphorylation, and inhibits fatty-acid desaturation regulated by hypoxia-inducible factor 1α (HIF-1α). Although tumor hypoxia has been found to promote tumor metastasis, the roles of HIF-1α-regulated genes and their application are not completely integrated in clinical practice. (2) Methods: We examined the correlation between HIF-1α, metadherin (MTDH), and interleukin (IL)-10 mRNA expression, as well as their expression patterns in the prognosis of breast cancer using the Gene Expression Profiling Interactive Analysis (GEPIA) databases via a web interface; tissue microarrays (TMAs) were stained for MTDH and IL-10 protein expression using immunohistochemistry. (3) Results: HIF-1α, MTDH, and IL-10 mRNA expression are highly correlated and strongly associated with poor prognosis. MTDH and IL-10 protein expression of breast cancer patients usually harbored negative estrogen receptor (ER) or progesterone receptor (PR) status, and late-stage tumors have higher IL-10 expression. With regard to MTDH and IL-10 protein expression status for using univariate and multivariate analysis, the results showed that the protein expression of MTDH and IL-10 in ER-negative or PR-negative breast cancer patients have the worse prognosis. (4) Conclusions: we propose a new insight into hypoxia tumors in the metabolism and immune evidence for breast cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document