scholarly journals Assessment of prospective geological hazards in Torrevieja-La Mata coast (western Mediterranean) based on Pleistocene and Holocene events

2021 ◽  
Author(s):  
Trinidad Torres ◽  
José E. Ortiz ◽  
Rosa Mediavilla ◽  
Yolanda Sánchez-Palencia ◽  
Juan Ignacio Santisteban ◽  
...  

AbstractThe coastal zone in which the lagoons of La Mata and Torrevieja (Eastern Spain) developed can be described as a compilation of geo-hazards typical of the Mediterranean realm. This study has focused mainly on those linked to recent tectonics. Extensive use of the amino acid racemization dating method allowed us to establish the evolution of all the geomorphological units differentiated in the area, the most striking manifestation being at the La Mata Lagoon Bar, where MIS 5 deposits settled on MIS 7 sediments along a marked erosive unconformity, thereby attesting coastal uplift between these two stages. In addition, recent uplift processes were reflected on stepped abrasion platforms and, in some cases, enormous boulders were transported over these platforms by extreme surge waves. Furthermore, we obtained feasible evidence that, during the end of MIS 5, an earthquake with an offshore epicenter linked to Torrevieja Fault, Bajo Segura Fault or the set of faults linked to the former, was responsible for tsunami surge deposits represented in accumulations of randomly arranged and well-preserved Glycymeris and Acanthocardia shells. Recent catastrophic effects linked to the earthquakes were also detected. In this regard, comparison of the paleontological and taphonomic analyses allowed us to discern between wave and tsunami surge deposits. Therefore, evidence of these hazards undoubtedly points to important future (and present) erosive and/or catastrophic processes, which are enhanced by the presence of tourist resorts and salt-mining industry. Thus, these sites are also threatened by future increases in sea level in the context of warmer episodes, attested by raised marine fossil deposits. At the north of Cervera Cape, beaches will be eroded, without any possibility of sediment input from the starved Segura River delta. At the south of this cape, waves (and tsunamis) will erode the soft rocks that built up the cliff, creating deep basal notches.

2021 ◽  
Author(s):  
Trinidad Torres ◽  
José E. Ortiz ◽  
Rosa Mediavilla ◽  
Yolanda Sánchez-Palencia ◽  
Juan Ignacio Santisteban ◽  
...  

Abstract The coastal zone in which the lagoons of La Mata and Torrevieja (Eastern Spain) developed can be described as a compilation of geo-hazards typical of the Mediterranean realm. This study has focused mainly on those linked to recent tectonics. Extensive use of the amino acid racemization dating method allowed us to establish the evolution of all the geomorphological units differentiated in the area, the most striking manifestation being at the La Mata Lagoon Bar, where MIS 5 deposits settled on MIS 7 sediments along a marked erosive unconformity, thereby attesting coastal uplift between these two stages. In addition, recent uplift processes were reflected on stepped abrasion platforms and, in some cases, enormous boulders were transported over these platforms by extreme surge waves. Furthermore, we obtained feasible evidence that, during the end of MIS 5, an earthquake with an offshore epicenter linked to Torrevieja Fault, Bajo Segura Fault or the set of faults linked to the former, was responsible for tsunami surge deposits represented in accumulations of randomly arranged and well preserved Glycymeris and Acanthocardia shells. Recent catastrophic effects linked to the earthquakes were also detected. In this regard, comparison of the paleontological and taphonomic analyses allowed us to discern between wave and tsunami surge deposits. Therefore, evidence of these hazards undoubtedly points to important future (and present) erosive and/or catastrophic processes, which are enhanced by the presence of tourist resorts and salt-mining industry. Thus, these sites are also threatened by future increases in sea level in the context of warmer episodes, attested by raised marine fossil deposits. At the north of Cervera Cape, beaches will be eroded, without any possibility of sediment input from the starved Segura River delta. South of this cape, waves (and tsunamis) will erode the soft rocks that built up the cliff, creating deep basal notches and causing rockfall and the collapse of the overlying buildings.


2014 ◽  
Vol 59 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Norbert Skoczylas

Abstract The Author endeavored to consult some of the Polish experts who deal with assessing and preventing outburst hazards as to their knowledge and experience. On the basis of this knowledge, an expert system, based on fuzzy logic, was created. The system allows automatic assessment of outburst hazard. The work was completed in two stages. The first stage involved researching relevant sources and rules concerning outburst hazard, and, subsequently, determining a number of parameters measured or observed in the mining industry that are potentially connected with the outburst phenomenon and can be useful when estimating outburst hazard. Then, the Author contacted selected experts who are actively involved in preventing outburst hazard, both in the industry and science field. The experts were anonymously surveyed, which made it possible to select the parameters which are the most essential in assessing outburst hazard. The second stage involved gaining knowledge from the experts by means of a questionnaire-interview. Subjective opinions on estimating outburst hazard on the basis of the parameters selected during the first stage were then systematized using the structures typical of the expert system based on fuzzy logic.


Author(s):  
Rafel MATAMALES-ANDREU ◽  
Francesc X. ROIG-MUNAR ◽  
Oriol OMS ◽  
Àngel GALOBART ◽  
Josep FORTUNY

ABSTRACT Moradisaurine captorhinid eureptiles were a successful group of high-fibre herbivores that lived in the arid low latitudes of Pangaea during the Permian. Here we describe a palaeoassemblage from the Permian of Menorca (Balearic Islands, western Mediterranean), consisting of ichnites of small captorhinomorph eureptiles, probably moradisaurines (Hyloidichnus), and parareptiles (cf. Erpetopus), and bones of two different taxa of moradisaurines. The smallest of the two is not diagnostic beyond Moradisaurinae incertae sedis. The largest one, on the other hand, shows characters that are not present in any other known species of moradisaurine (densely ornamented maxillar teeth), and it is therefore described as Balearosaurus bombardensis gen. et sp. nov. Other remains found in the same outcrop are identified as cf. Balearosaurus bombardensis gen. et sp. nov., as they could also belong to the newly described taxon. This species is sister to the moradisaurine from the lower Permian of the neighbouring island of Mallorca, and is also closely related to the North American genus Rothianiscus. This makes it possible to suggest the hypothesis that the Variscan mountains, which separated North America from southern Europe during the Permian, were not a very important palaeobiogeographical barrier to the dispersion of moradisaurines. In fact, mapping all moradisaurine occurrences known so far, it is shown that their distribution area encompassed both sides of the Variscan mountains, essentially being restricted to the arid belt of palaeoequatorial Pangaea, where they probably outcompeted other herbivorous clades until they died out in the late Permian.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 460
Author(s):  
Takvor H. Soukissian ◽  
Flora E. Karathanasi

In the context of wave resource assessment, the description of wave climate is usually confined to significant wave height and energy period. However, the accurate joint description of both linear and directional wave energy characteristics is essential for the proper and detailed optimization of wave energy converters. In this work, the joint probabilistic description of wave energy flux and wave direction is performed and evaluated. Parametric univariate models are implemented for the description of wave energy flux and wave direction. For wave energy flux, conventional, and mixture distributions are examined while for wave direction proven and efficient finite mixtures of von Mises distributions are used. The bivariate modelling is based on the implementation of the Johnson–Wehrly model. The examined models are applied on long-term measured wave data at three offshore locations in Greece and hindcast numerical wave model data at three locations in the western Mediterranean, the North Sea, and the North Atlantic Ocean. A global criterion that combines five individual goodness-of-fit criteria into a single expression is used to evaluate the performance of bivariate models. From the optimum bivariate model, the expected wave energy flux as function of wave direction and the distribution of wave energy flux for the mean and most probable wave directions are also obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucia Di Iorio ◽  
Manon Audax ◽  
Julie Deter ◽  
Florian Holon ◽  
Julie Lossent ◽  
...  

AbstractMonitoring the biodiversity of key habitats and understanding the drivers across spatial scales is essential for preserving ecosystem functions and associated services. Coralligenous reefs are threatened marine biodiversity hotspots that are challenging to monitor. As fish sounds reflect biodiversity in other habitats, we unveiled the biogeography of coralligenous reef sounds across the north-western Mediterranean using data from 27 sites covering 2000 km and 3 regions over a 3-year period. We assessed how acoustic biodiversity is related to habitat parameters and environmental status. We identified 28 putative fish sound types, which is up to four times as many as recorded in other Mediterranean habitats. 40% of these sounds are not found in other coastal habitats, thus strongly related to coralligenous reefs. Acoustic diversity differed between geographical regions. Ubiquitous sound types were identified, including sounds from top-predator species and others that were more specifically related to the presence of ecosystem engineers (red coral, gorgonians), which are key players in maintaining habitat function. The main determinants of acoustic community composition were depth and percentage coverage of coralligenous outcrops, suggesting that fish-related acoustic communities exhibit bathymetric stratification and are related to benthic reef assemblages. Multivariate analysis also revealed that acoustic communities can reflect different environmental states. This study presents the first large-scale map of acoustic fish biodiversity providing insights into the ichthyofauna that is otherwise difficult to assess because of reduced diving times. It also highlights the potential of passive acoustics in providing new aspects of the correlates of biogeographical patterns of this emblematic habitat relevant for monitoring and conservation.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohammad Heidarzadeh ◽  
Yuchen Wang ◽  
Kenji Satake ◽  
Iyan E. Mulia

AbstractWestern Mediterranean Basin (WMB) is among tsunamigenic zones with numerous historical records of tsunami damage and deaths. Most recently, a moderate tsunami on 21 May 2003 offshore Algeria, North Africa, was a fresh call for strengthening tsunami warning capabilities in this enclosed water basin. Here, we propose to deploy offshore bottom pressure gauges (OBPGs) and to adopt the framework of a tsunami data assimilation (TDA) approach for providing timely tsunami forecasts. We demonstrate the potential enhancement of the tsunami warning system through the case study of the 2003 Algeria tsunami. Four scenarios of OBPG arrangements involving 10, 5, 3 and 2 gauges are considered. The offshore gauges are located at distances of 120–300 km from the North African coast. The warning lead times are 20, 30, 48 and 55 min for four points of interest considered in this study: Ibiza, Palma, Sant Antoni and Barcelona, respectively. The forecast accuracies are in the range of 69–85% for the four OBPG scenarios revealing acceptable accuracies for tsunami warnings. We conclude that installation of OBPGs in the WMB can be helpful for providing successful and timely tsunami forecasts. We note that the OBPG scenarios proposed in this study are applicable only for the case of the 2003 Algeria tsunami. Further studies including sensitivity analyses (e.g., number of OBPG stations; earthquake magnitude, strike, epicenter) are required in order to determine OBPG arrangements that could be useful for various earthquake scenarios in the WMB.


2021 ◽  
Vol 9 (2) ◽  
pp. 208
Author(s):  
Valentina Vannucchi ◽  
Stefano Taddei ◽  
Valerio Capecchi ◽  
Michele Bendoni ◽  
Carlo Brandini

A 29-year wind/wave hindcast is produced over the Mediterranean Sea for the period 1990–2018. The dataset is obtained by downscaling the ERA5 global atmospheric reanalyses, which provide the initial and boundary conditions for a numerical chain based on limited-area weather and wave models: the BOLAM, MOLOCH and WaveWatch III (WW3) models. In the WW3 computational domain, an unstructured mesh is used. The variable resolutions reach up to 500 m along the coasts of the Ligurian and Tyrrhenian seas (Italy), the main objects of the study. The wind/wave hindcast is validated using observations from coastal weather stations and buoys. The wind validation provides velocity correlations between 0.45 and 0.76, while significant wave height correlations are much higher—between 0.89 and 0.96. The results are also compared to the original low-resolution ERA5 dataset, based on assimilated models. The comparison shows that the downscaling improves the hindcast reliability, particularly in the coastal regions, and especially with regard to wind and wave directions.


1984 ◽  
Vol 121 (6) ◽  
pp. 577-587 ◽  
Author(s):  
P. E. R. Lovelock

AbstractThe structure of the northern part of the Arabian platform is reviewed in the light of hitherto unpublished exploration data and the presently accepted kinematic model of plate motion in the region. The Palmyra and Sinjar zones share a common history of development involving two stages of rifting, one in the Triassic–Jurassic and the other during late Cretaceous to early Tertiary times. Deformation of the Palmyra zone during the Mio-Pliocene is attributed to north–south compression on the eastern block of the Dead Sea transcurrent system which occurred after continental collision in the north in southeast Turkey. The asymmetry of the Palmyra zone is believed to result from northward underthrusting along the southern boundary facilitated by the presence of shallow Triassic evaporites. An important NW-SE cross-plate shear zone has been identified, which can be traced for 600 km and which controls the course of the River Euphrates over long distances in Syria and Iraq. Transcurrent motion along this zone resulted in the formation of narrow grabens during the late Cretaceous which were compressed during the Mio-Pliocene. To a large extent, present day structures in the region result from compressional reactivation of old lineaments within the Arabian plate by the transcurrent motion of the Dead Sea fault zone and subsequent continental collision.


2020 ◽  
pp. 1-19
Author(s):  
Vladimir Sheinkman ◽  
Sergey Sedov ◽  
Lyudmila S. Shumilovskikh ◽  
Elena Bezrukova ◽  
Dmitriy Dobrynin ◽  
...  

Abstract Recent revision of the Pleistocene glaciation boundaries in northern Eurasia has encouraged the search for nonglacial geological records of the environmental history of northern West Siberia. We studied an alluvial paleosol-sedimentary sequence of the high terrace of the Vakh River (middle Ob basin) to extract the indicators of environmental change since Marine Oxygen Isotope Stage (MIS) 6. Two levels of the buried paleosols are attributed to MIS 5 and MIS 3, as evidenced by U/Th and radiocarbon dates. Palynological and pedogenetic characteristics of the lower pedocomplex recorded the climate fluctuations during MIS 5, from the Picea-Larix taiga environment during MIS 5e to the establishment of the tundra-steppe environment due to the cooling of MIS 5d or MIS 5b and partial recovery of boreal forests with Picea and Pinus in MIS 5c or MIS 5a. The upper paleosol level shows signs of cryogenic hydromorphic pedogenesis corresponding to the tundra landscape, with permafrost during MIS 3. Boulders incorporated in a laminated alluvial deposit between the paleosols are dropstones brought from the Enisei valley by ice rafting during the cold MIS 4. An abundance of eolian morphostructures on quartz grains from the sediments that overly the upper paleosol suggests a cold, dry, and windy environment during the MIS 2 cryochron.


Sign in / Sign up

Export Citation Format

Share Document