scholarly journals On the effect of model uncertainty on the Hopf bifurcation of aeroelastic systems

Author(s):  
Andrea Iannelli ◽  
Mark Lowenberg ◽  
Andrés Marcos

AbstractThis paper investigates the effect of model uncertainty on the nonlinear dynamics of a generic aeroelastic system. Among the most dangerous phenomena to which these systems are prone, Limit Cycle Oscillations are periodic isolated responses triggered by the nonlinear interactions among elastic deformations, inertial forces, and aerodynamic actions. In a dynamical systems setting, these responses typically emanate from Hopf bifurcation points, and thus a recently proposed framework, which address the problem of robustness from a nonlinear dynamics viewpoint, is employed. Briefly, the notion of robust bifurcation margin extends the concept of $$\mu $$ μ analysis technique from the robust control theory. The main contribution of this article is a systematic investigation of the numerous scenarios arising in the study of nonlinear flutter when uncertainties in the model are accounted for in the analyses. The advantages of adopting this framework include the possibility to: quantify relevant information for the determination of the nonlinear stability envelope; gain a more in-depth understanding of the physical mechanisms triggering subcritical and supercritical Hopf bifurcations; and reveal properties of the nominal system by identifying isolated branches not straightforward to detect with conventional numerical approaches.

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Enong Rostiawati

Abstract: Organizational Citizenship Behavior (OCB) is a variable that can be influenced by job satisfaction. This study aims to determine the effect of job satisfaction variables on Organizational Citizenship Behavior OCB alumni level IV leadership training in Banten Province. This research uses a quantitative approach through survey methods. Data analysis technique used is simple linear regression. The population in this study were 40 respondents and the sample used was 40 respondents. Determination of the sample using total sampling techniques or samples taken from the entire study population. The results of the analysis and interpretation of research data show that the value of the regulatory coefficient of influence on job satisfaction on Organizational Citizenship Behavior (OCB) alumni of leadership training level IV is 0.740 thus it can be concluded that job satisfaction has a direct positive effect on Organizational Citizenship Behavior alumni training, meaning that improvement of satisfaction in IV level leadership training is 0.740. work has an impact on improving Organizational Citizenship Behavior for training alumni, So Organizational Citizenship Behavior for training alumni can be achieved through job satisfaction.Keywords: Job satisfaction, Organizational Citizenship Behavior, Leadership Training Alumni Level IV


Equity ◽  
2015 ◽  
Vol 18 (1) ◽  
pp. 19
Author(s):  
Regi Oktaviyori ◽  
Praptiningsih Praptiningsih

This study aims to examine the determination of musyarakah financing in Bank Syariah Mandiri (BSM) period March 2008-December 2011. The data is obtainedbased on bank finance reporting that at publication. It is gained sample amount of 44 months. The analysis technique used here is multiple linier regression and hypothesis test using t-statistic and F-statistic with level of significance 5%. The result of this research is Third Parties Fund (DPK) and return gives significantly on musyarakah financing. The return on asset is not significant to musyarakah financing. By simultaneous, musyarakah financing give significant influence on the level of Third Parties Fund, return and return on asset.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


Author(s):  
Z. C. Ong ◽  
C. C. Lee

A novel modal analysis technique called impact-synchronous modal analysis (ISMA) was introduced in previous research. With the utilization of impact-synchronous time averaging (ISTA), this modal analysis can be performed in presence of ambient forces whereas the conventional analysis method requires machines to be totally shut down. However, lack of information of phase angles with respect to impact in ISMA has caused it to be labor-intensive and time-consuming. An automated impact device (AID) is introduced in this study in the effort to replace the manually operated impact hammer and prepare it to be used in the current practice of ISMA on the purpose of enhancing its effectiveness and practicability. Impact profile and isolation effect are noted to be the contributing parameters in this study. This paper devoted on calibrating and controlling of the AID which gives the desired impact profiles as compared to the manual impact hammer. The AID is found effective in the determination of dynamic characteristics when the device is isolated from the boundary condition of the test structure.


2013 ◽  
Vol 11 (11) ◽  
pp. 1860-1873 ◽  
Author(s):  
Magdalena Nowacka ◽  
Łukasz Klapiszewski ◽  
Małgorzata Norman ◽  
Teofil Jesionowski

AbstractAdvanced silica/lignin hybrid biomaterials were obtained using hydrated or fumed silicas (Aerosil®200) and Kraft lignin as precursors, which is a cheap and biodegradable natural polymer. To extend the possible range of applications, the silicas were first modified with N-2-(aminoethyl)-3-aminopropyltrimethoxsysilane, and then with Kraft lignin, which had been oxidized with sodium periodate. The SiO2/lignin hybrids and precursors were characterised by means of determination of their physicochemical and dispersive-morphological properties. The effectiveness of silica binding to lignin was verified by FT-IR spectroscopy. The zeta potential value provides relevant information regarding interactions between colloid particles. Measurement of the zeta potential values enabled an indirect assessment of stability for the studied hybrid systems. Determination of zeta potential and density of surface charge also permitted the quantitative analysis of changes in surface charge, and indirectly confirmed the effectiveness of the proposed method for synthesis of SiO2/lignin hybrid materials. A particularly attractive feature for practical use is their stability, especially electrokinetic stability. It is expected that silica/lignin hybrids will find a wide range of applications (polymer fillers, biosorbents, electrochemical sensors), as they combine the unique properties of silica with the specific structural features of lignin. This makes these hybrids biomaterials advanced and multifunctional.


Author(s):  
Licai Wang ◽  
Yudong Chen ◽  
Chunyan Pei ◽  
Lina Liu ◽  
Suhuan Chen

Abstract The feedback control of Hopf bifurcation of nonlinear aeroelastic systems with asymmetric aerodynamic lift force and nonlinear elastic forces of the airfoil is discussed. For the Hopf bifurcation analysis, the eigenvalue problems of the state matrix and its adjoint matrix are defined. The Puiseux expansion is used to discuss the variations of the non-semi-simple eigenvalues, as the control parameter passes through the critical value to avoid the difficulty for computing the derivatives of the non-semi-simple eigenvalues with respect to the control parameter. The method of multiple scales and center-manifold reduction are used to deal with the feedback control design of a nonlinear system with non-semi-simple eigenvalues at the critical point of the Hopf bifurcation. The first order approximate solutions are developed, which include gain vector and input. The presented methods are based on the Jordan form which is the simplest one. Finally, an example of an airfoil model is given to show the feasibility and for verification of the present method.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Paolo Piergentili ◽  
Wenlin Li ◽  
Riccardo Natali ◽  
David Vitali ◽  
Giovanni Di Giuseppe

Sign in / Sign up

Export Citation Format

Share Document