Quantifying root water extraction by rangeland plants through soil water modeling

2010 ◽  
Vol 335 (1-2) ◽  
pp. 181-198 ◽  
Author(s):  
Xuejun Dong ◽  
Bob D. Patton ◽  
Anne C. Nyren ◽  
Paul E. Nyren ◽  
Lyle D. Prunty
2007 ◽  
Vol 11 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Eugênio F. Coelho ◽  
Delfran B. dos Santos ◽  
Carlos A. V. de Azevedo

This research had as its objective the investigation of an alternative strategy for soil sensor placement to be used in citrus orchards irrigated by micro sprinkler. An experiment was carried out in a Tahiti lemon orchard under three irrigation intervals of 1, 2 and 3 days. Soil water potential, soil water content distribution and root water extraction were monitored by a time-domain-reflectometry (TDR) in several positions in soil profiles radial to the trees. Root length and root length density were determined from digital root images at the same positions in the soil profiles where water content was monitored. Results showed the importance of considering root water extraction in the definition of soil water sensor placement. The profile regions for soil water sensor placement should correspond to the intersection of the region containing at least 80% of total root length and the region of at least 80% of total water extraction. In case of tensiometers, the region of soil water potential above -80 kPa should be included in the intersection.


1984 ◽  
Vol 103 (1) ◽  
pp. 189-199 ◽  
Author(s):  
M. J. Goss ◽  
K. R. Howse ◽  
Judith M. Vaughan-Williams ◽  
M. A. Ward ◽  
W. Jenkins

SummaryIn each of the years from September 1977 to July 1982 winter wheat was grown on one or more of three clay soil sites (clay content 35–55%) in Oxfordshire where the climate is close to the average for the area of England growing winter cereals.The effects on crop water use of different soil management practices, including ploughing, direct drilling and subsoil drainage, are compared. Cultivation treatment had little effect on the maximum depth of water extraction, which on average in these clay soils was 1·54 m below the soil surface. Maximum soil water deficit was also little affected by cultivation; the maximum recorded value was 186±7·6 mm. Subsoil drainage increased the maximum depth of water extraction by approximately 15 cm and the maximum soil water deficit by about 17 mm.Generally soil management had little effect on either total water use by the crop which was found to be close to the potential evaporation estimated by the method of Penman, or water use efficiency which for these crops was about 52 kg/ha par mm water used.Results are discussed in relation to limitations to potential yield.


2009 ◽  
Vol 13 (3) ◽  
pp. 257-261 ◽  
Author(s):  
Adriana L. da Silva ◽  
Isabeli P. Bruno ◽  
Klaus Reichardt ◽  
Osny O. S. Bacchi ◽  
Durval Dourado-Neto ◽  
...  

Basic information for a rational soil-water management of the coffee crop is still insufficient, particularly under irrigated conditions. Of great importance for the estimation of water requirements of coffee crops are their root distribuition and evapotranspiration crop coefficients. This study compares soil water extraction by roots of coffee plants of the variety "Catuaí Vermelho" (IAC-44), grown in Piracicaba, SP, Brazil, 3 to 5 years old, with direct measurements of root dry matter, showing a good agreement between both approaches, and confirming that most of the root system is distributed in the top soil layer (0-0.3 m) and that less than 10% of the root system reaches depths greater than 1.0 m. Calculated evapotranspiration crop coefficients are in agreement with those found in the literature, with an average of 1.1, independent of shoot dry matter, plant height and leaf area index.


Irriga ◽  
2018 ◽  
Vol 1 (01) ◽  
pp. 246
Author(s):  
Lígia Borges Marinho ◽  
José Antonio Frizzone ◽  
João Batista Tolentino Júnior ◽  
Janaina Paulino ◽  
Danilton Luiz Flumigan ◽  
...  

DINÂMICA DA ÁGUA NO SISTEMA SOLO-PLANTA NO CULTIVO DA PIMENTA TABASCO SOB DÉFICIT HÍDRICO1  LÍGIA BORGES MARINHO2; JOSÉ ANTONIO FRIZZONE3; JOÃO BATISTA TOLENTINO JÚNIOR4; JANAÍNA PAULINO5; DANILTON LUIZ FLUMIGNAN6 E DIEGO BORTOLOTI GÓES3    (1) Artigo extraído da tese do primeiro autor (2) Departamento Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, av. Edgard Chastinet, São Geraldo, CEP 48905-680, Juazeiro, BA. Fone (74) 3611-7363. E-mail: [email protected](3) Departamento de Engenharia de Biossistemas/Escola Superior de Agricultura “Luiz de Queiroz” USP, Av. Pádua Dias, 11, CEP 13.418-900, Piracicaba/SP, E-mail(s): [email protected], [email protected]; (4) Campus Curitibanos, Universidade Federal de Santa Catarina, Curitibanos, SC. [email protected] (5) Universidade Federal de Mato Grosso UFMT, campus Sinop, Avenida Alexandre Ferronato Nº 1.200. Bairro: Setor Industrial. CEP: 78.550-000,  Sinop-MT, Email: [email protected] (6) Empresa Brasileira de Pesquisa Agropecuária, Agropecuária Oeste. Rodovia BR 163, km 253, Zona Rural, 79804970 - Dourados, MS,  Email: [email protected]  1 RESUMO  O objetivo da pesquisa foi acompanhar a variação da condição hídrica do solo e da planta de pimenta ‘Tabasco’ em função dos manejos de déficits hídricos impostos e determinar seu coeficiente de estresse hídrico. O experimento foi conduzido em ambiente protegido, no Departamento de Engenharia de Biossistemas da ESALQ - USP, Piracicaba-SP, de setembro de 2009 a julho de 2010. O delineamento experimental foi blocos casualizados, com quatro repetições, utilizando-se lâminas de irrigação a 100, 80, 60 e 40% da evapotranspiração da cultura diferenciadas a partir da fase vegetativa e da fase reprodutiva. O potencial da água na folha e no solo foi aferido com a câmara de pressão e tensiômetros, respectivamente. Houve variação do potencial mátrico, da extração de água no solo e do potencial de água na folha em função das lâminas e das épocas de diferenciação. Menores potenciais mátricos foram verificados quando o déficit de irrigação foi inicializado na fase vegetativa da pimenta. Os valores de coeficiente de estresse hídrico e o potencial de água na folha, ao alvorecer, indicaram que as pimenteiras estavam sob estresse moderado e severo, sendo a época reprodutiva da pimenta Tabasco a mais sensível à restrição hídrica.Palavras-chave: Capsicum frutencens L, tensiômetro, potencial da água no solo.                                                        MARINHO, L. B.; FRIZZONE, J. A.; TOLENTINO JÚNIOR, J. B.; PAULINO, J.; FLUMIGNAN, D. L.; GÓES, D. B.WATER DYNAMICS IN SOIL-PLANT SYSTEM IN THE CULTIVATION OF PEPPER TABASCO UNDER WATER DEFICIT  2 ABSTRACT The objective of the research was to determine the change in soil water condition and in Tabasco pepper plant according to the managements of water deficits. The experiment was conducted in a greenhouse at the Department of Biosystems Engineering of ESALQ - USP, Piracicaba-SP, from September 2009 to July 2010. The experimental design was randomized blocks with four replications, using irrigation depths to 100, 80, 60 and 40% of crop evapotranspiration in the vegetative phase and reproductive phase. The soil matric potential was measured by tensiometers installed at 0-20 and 20-40 cm depth. The most negative values of matric potential occurred in treatments submitted to the greater water deficit treatments that had higher water restriction imposed by the vegetative phase. For these, greater increase in water extraction in the deepest layer (40 cm) were also found.There were differences in matric potential of the soil, in ground water extraction and in leaf water potential in relation to the water depths and differentiation phases. The deficit irrigation that started in the vegetative phase led to greater reduction in soil matric potential due to the accumulated water deficit. The pepper plants have moderate to severe sensitivity to water deficit in the soil, with a higher sensitivity of the plants when water restriction is imposed during reproductive stages than when it is imposed during growing stages. Keywords : Capsicum frutencens, tensiometer; soil water potential


Soil Research ◽  
1995 ◽  
Vol 33 (3) ◽  
pp. 443 ◽  
Author(s):  
NS Jayawardane ◽  
HD Barrs ◽  
WA Muirhead ◽  
J Blackwell ◽  
E Murray ◽  
...  

Subsoil acidity causes low crop production, which is often associated with shallow root development and restricted soil water extraction. In part I of this series, lime-slotting of an acid soil was shown to improve the soil physical and chemical characteristics for root growth. In a lysimeter study on an acid soil, the effects of several soil ameliorative treatments on root growth, water extraction and yields of a medic crop were evaluated. Large lysimeter cores of 0.75 m diameter and 1.35 m deep were used. The soil treatments included a non-ameliorated acid soil, lime-slotting with a 0.15 m wide and 0.8 m deep slot containing 20 t ha-1 of lime, lime-slotting combined with surface phospho-gypsum application at 10 t ha-1, and complete amelioration of the entire soil volume by mixing lime at 133 t ha-1 and repacking to a low bulk density of 1.1 t m-3. In the non-ameliorated acid soil, medic roots were confined to the surface (0.1 m) layer, resulting in limited water extraction of 32 mm during a prolonged drying cycle, and a low dry matter yield of 70 g m-2. In the lime slotted soil, roots grew within the slot to its full depth, although penetration into the undisturbed soil was restricted to the soil immediately adjacent to the slot. Consequently, the root length per unit surface area (La) at depths below 0.1 m depth was increased to 9.9 km m-2. During a drying cycle, water extraction increased to 58 mm. The increased water extraction came from both the slotted soil and the undisturbed soil between slots. This led to an increase in dry matter yields to 270 g m2. In lime-slotted soils with surface gypsum applications, the root growth and crop water extraction patterns were similar to the lime-slotted soil. Repacking limed soil resulted in similar root lengths (L(a) 10.0 km m-2) as lime-slotted soil. However, owing to more uniform distribution of roots in the repacked soil, water extraction was increased to 100 mm and yields increased to 590 g m-2. Yields of non-ameliorated soil were only 12% of the repacked, limed soil. However, lime-slotting which involves loosening only 25% of the soil surface area and addition of only one-sixth of the amount of lime required for complete soil amelioration, led to marked increases in yield (46% of the yield of repacked soil). Future field studies are required to evaluate the optimum limed-slot configurations required for different soils, crops and climatic regimes.


Soil Research ◽  
1986 ◽  
Vol 24 (1) ◽  
pp. 25 ◽  
Author(s):  
T Talsma ◽  
EA Gardner

Eucalypt trees growing on deep soils, with a water table at about 8 m depth, showed no apparent drought effects during the 1982-83 dry period in south-east Australia when gross precipitation was only 388 mm. At the end of the drought, soil water to 4 m depth was depleted to a soil water potential of -0.5 MPa and under these conditions unsaturated flow from the water table to the lower root zone was calculated to be 0.17 mm day-1. Water extraction over the depth interval from 0 to 6 m in the drought year was 533 mm, some 200 mm in excess of that used during a year of average rainfall. The contribution to tree water use from unsaturated flow from the water table was calculated to be small (15 mm) even in a drought year, and in most years water movement would be towards the water table to yield a deep drainage term estimated between 40 and 100 mm. Growth ring studies indicated that the lower water use, estimated at 2.6 mm day-1 during the spring-summer drought, did not affect the slowly growing E. radiata species, but reduced stem diameter growth of the faster growing E. dalrympleana and E. pauciflora species.


Sign in / Sign up

Export Citation Format

Share Document