scholarly journals Microencapsulation of Phenolic Extracts from Cocoa Shells to Enrich Chocolate Bars

Author(s):  
M. Grassia ◽  
M.C. Messia ◽  
E. Marconi ◽  
Ȫ. Şakiyan Demirkol ◽  
F. Erdoğdu ◽  
...  

AbstractCocoa bean shells were subjected to green extraction technologies, based on the absence of toxic organic solvents, to recover polyphenols; the extract was then encapsulated using a spray dryer and maltodextrin as coating agent. The best conditions observed in the spray drying tests (core-to-coating ratio 1:5; inlet temperature 150 °C; flow rate 6 ml min−1) were applied to produce the microcapsules used to enrich the same cocoa mass as the shells and processed for the preparation of the chocolate bars. Sensory analysis showed no significant differences between enriched chocolate bar and the unenriched reference one, except for the appearance. Both samples were then subjected to accelerated storage tests, at the end of which the polyphenols in the control chocolate bar (0.85 g 100 g−1) were reduced by about 50% (0.42 g 100 g−1), while in the enriched chocolate (1.17 g 100 g−1) by only 22% (0.97 g 100 g−1). The proposed process significantly enriched the chocolate bars with phenolic antioxidants recovered from cocoa waste without increasing the sensations of bitterness and astringency.

Author(s):  
Tagor Marsillam Siregar ◽  
Clarine Kristanti

Daun Kenikir (Cosmos caudatus K.) memiliki kandungan senyawa fenolik dan aktivitas antioksidan yang tinggi. Senyawa fenolik telah diketahui sensitif terhadap cahaya, oksigen dan panas. Enkapsulasi dapat melindungi senyawa fenolik dalam ekstrak. Penelitian ini bertujuan untuk mempelajari pengaruh rasio bahan inti:bahan penyalut (1:10 dan 1: 20) dan suhu inlet spray dryer (125, 150 dan 175oC) terhadap karakteristik mikrokapsul. Pada penelitian tahap pendahuluan, daun kenikir diekstraksi menggunakan pelarut etanol, kemudian ekstrak yang diperoleh dianalisis aktivitas antioksidan dan total fenolik. Pada tahap selanjutnya ekstrak dienkapsulasi dan mikrokapsul yang diperoleh dianalisis powder recovery, kandungan total fenolik, effisiensi enkapsulasi, aktivitas antioksidan dan ukuran partikel. Rasio bahan inti:bahan penyalutdansuhu inlet spray dryer mempengaruhi powder recovery, total fenolik, effisiensi enkapsulasi, aktivitas antioksidan dan ukuran partikel mikrokapsul. Perlakuan dengan rasio bahan inti:bahan penyalut1:20 dan suhu inlet spray dryer 125oC menghasilkan mikrokapsul dengan powder recovery 59,87%, total fenol 24,644 mgGAE/g sampel, efisiensi enkapsulasi 98,820%, aktivitas antioksidan (IC50) 1711,804 ppm dan ukuran partikel 1,55 µm.Microencapsulation Of Phenolic Compounds From Cosmos caudatus K. Leaves ExtractCosmos caudatus K. leaves are high in total phenolic content and have high antioxidant activity. Phenolic compounds are sensitive to light, oxygen, and heat. Encapsulation process can protect the phenolic compounds of extract. This research was aimed to study the effect of core to coating ratio (1:10 and 1:20) and spray drying inlet temperature (125, 150, and 175°C) towards the characteristics of microcapsules. In preliminary stage, Cosmos caudatus K. leaves were extracted with ethanol. The extract was analyzed for antioxidant activity and total phenolic content. In the main stage, the extract were encapsulated. The microcapsules were analyzed for powder recovery, total phenolic content, encapsulation efficiency, antioxidant activity, and particle size. Core to coating ratio and inlet temperature affected the powder recovery, total phenolic content, encapsulation efficiency, antioxidant activity, and particle size of microcapsules. Microcapsules with core to coating ratio 1:20 and inlet temperature 125°C gave the best result with powder recovery 59.87%, total phenolic content 24.644 mg GAE/g sample, encapsulation efficiency 98.820%, IC50 1711.804 ppm, and particle size 1.55 μm.                      •


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1926
Author(s):  
Emilie Tabare ◽  
Tea Glonti ◽  
Christel Cochez ◽  
Cyrille Ngassam ◽  
Jean-Paul Pirnay ◽  
...  

In the present study, we evaluated the effect of spray-drying formulations and operating parameters of a laboratory-scale spray-dryer on the characteristics of spray-dried powders containing two Pseudomonas aeruginosa bacteriophages exhibiting different morphotypes: a podovirus (LUZ19) and a myovirus (14-1). We optimized the production process for bacteriophage-loaded powders, with an emphasis on long-term storage under ICH (international conference on harmonization) conditions. D-trehalose-/L-isoleucine-containing bacteriophage mixtures were spray-dried from aqueous solutions using a Büchi Mini Spray-dryer B-290 (Flawil, Switzerland). A response surface methodology was used for the optimization of the spray-drying process, with the following as-evaluated parameters: Inlet temperature, spray gas flow rate, and the D-trehalose/L-isoleucine ratio. The dried powders were characterized in terms of yield, residual moisture content, and bacteriophage lytic activity. L-isoleucine has demonstrated a positive impact on the activity of LUZ19, but a negative impact on 14-1. We observed a negligible impact of the inlet temperature and a positive correlation of the spray gas flow rate with bacteriophage activity. After optimization, we were able to obtain dry powder preparations of both bacteriophages, which were stable for a minimum of one year under different ICH storage conditions (up to and including 40 °C and 75% relative humidity).


Author(s):  
M. Fatouh

This paper reports the results of an experimental investigation on a pilot compression chiller (4 kW cooling capacity) working with R401a and R134a as R12 alternatives. Experiments are conducted on a single-stage vapor compression refrigeration system using water as a secondary working fluid through both evaporator and condenser. Influences of cooling water mass flow rate (170–1900 kg/h), cooling water inlet temperature (27–43°C) and chilled water mass flow rate (240–1150 kg/h) on performance characteristics of chillers are evaluated for R401a, R134a and R12. Increasing cooling water mass flow rate or decreasing its inlet temperature causes the operating pressures and electric input power to reduce while the cooling capacity and coefficient of performance (COP) to increase. Pressure ratio is inversely proportional while actual loads and COP are directly proportional to chilled water mass flow rate. The effect of cooling water inlet temperature, on the system performance, is more significant than the effects of cooling and chilled water mass flow rates. Comparison between R12, R134a and R401a under identical operating conditions revealed that R401a can be used as a drop-in refrigerant to replace R12 in water-cooled chillers.


Author(s):  
Jinjun Zhang ◽  
Jianlin Ding ◽  
Kang Xu ◽  
Huajun Fan

Flow risk of a hot waxy crude pipeline mainly comes from restart failure, i.e. oil gelation resulted from prolonged pipeline shutdown, and unstable operation at low flow rate. Once the unstable operation happens, the friction loss of the pipeline increases with decreasing flow rate and finally flow may cease if treated improperly. To avoid these flow risks, the pumping temperature of the crude is generally required to be kept above a minimum allowable temperature, and conventionally the pour point temperature is taken. This practice is effective but quite rough. Obviously, to control the inlet temperature of a heating station at the pour point temperature implies different safety margin for winter and summer operation. For large throughput hot oil pipelines, reduction of the heating temperature even by a little bit may save a great amount of fuel. Therefore, how to save fuel while ensuring safe operation has been a valuable topic for long time. On the other hand, many factors impacting the flow safety are stochastic and with uncertainty, so analysis without considering this feature can hardly yield convincible results, though this has been the common case for many years. In this paper, by taking the stochastic feature into account, a Stable Operation Index (SOI) and a Pipeline Restartability Index (PRI) were proposed to assess the flow safety of a pipeline concerning the low-flowrate stable operation and restartability after shutdown. Combining these two indexes, a Pipeline Flow Safety Index (PFSI) was adopted to assess the flow risks of hot waxy crude pipelines. On this basis a new approach to quantitatively determining the safe pumping temperature was developed and illustrated by a case study. Encouraging results show that this new approach has the potential to replace the simple rule of pour point as a guide to determining the safe pumping temperature of waxy crude pipelines.


2020 ◽  
Vol 859 ◽  
pp. 301-306
Author(s):  
Nattakanwadee Khumpirapang ◽  
Supreeya Srituptim ◽  
Worawut Kriangkrai

Garlic exerts its pharmacological activities; antihyperglycemic, antihyperlipidemia, antihypercholesterolemic, and antihypertensive activity. Therefore, the aim of this study was to determine and optimize the influence of the individual and interactive effect of process conditions variables on the yield of garlic extract powders by three factors and three level-Box-Behnken design under response surface methodology. Spray drying processes the transformation of a garlic juice extract into a dried powder, where usually maltodextrin (MD) as a drying agent is used. According to experimental design, the mixing of garlic juice extract (85 – 95 %w/w) and MD (5 – 15 %w/w) were dried at an air inlet temperature 110°C - 150°C and liquid feed flow rate 5 – 35 rpm. The optimum spray-drying process conditions which maximized the yield of garlic extract powder (31%w/w) were found as follows: air inlet temperature of 150°C, the liquid feed flow rate of 16 rpm, and 5 %w/w MD. The experimental values slightly closed to the corresponding predicted values. Hence, the developed model was adequate and possible to use.


2021 ◽  
Vol 39 (4) ◽  
pp. 1225-1235
Author(s):  
Ajay K. Gupta ◽  
Manoj Kumar ◽  
Ranjit K. Sahoo ◽  
Sunil K. Sarangi

Plate-fin heat exchangers provide a broad range of applications in many cryogenic industries for liquefaction and separation of gasses because of their excellent technical advantages such as high effectiveness, compact size, etc. Correlations are available for the design of a plate-fin heat exchanger, but experimental investigations are few at cryogenic temperature. In the present study, a cryogenic heat exchanger test setup has been designed and fabricated to investigate the performance of plate-fin heat exchanger at cryogenic temperature. Major parameters (Colburn factor, Friction factor, etc.) that affect the performance of plate-fin heat exchangers are provided concisely. The effect of mass flow rate and inlet temperature on the effectiveness and pressure drop of the heat exchanger are investigated. It is observed that with an increase in mass flow rate effectiveness and pressure drop increases. The present setup emphasis the systematic procedure to perform the experiment based on cryogenic operating conditions and represent its uncertainties level.


The shape of a radiator cover is crucial either in determining the pattern of air flow or in increasing the same through the radiator core thereby increasing the thermal efficiency, thus making it a necessity to understand it. Moreover the parts circumjacent to the core namely the upper tank, lower tank, cooling fan, fins, tubes, etc promote the air flow rate. Also it is to note that the air flow rate of discharge gases from radiator core is one of the prime factors in determining the automobile cooling system. Initially factors such as temperature, pressure, air flow rate that affect the performance are obtained in order to derive out the entities of operation. One of the observations that can be made through this paper is that as the volume of the coolant increases, the rate of heat dissipation increases, also parameters like inlet temperature and volume flow rate of coolant, air velocity, temperature drop and drop in pressure of coolant are factors that contribute in radiator performance evidently.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Richard Eiland ◽  
John Edward Fernandes ◽  
Marianna Vallejo ◽  
Ashwin Siddarth ◽  
Dereje Agonafer ◽  
...  

Complete immersion of servers in dielectric mineral oil has recently become a promising technique for minimizing cooling energy consumption in data centers. However, a lack of sufficient published data and long-term documentation of oil immersion cooling performance make most data center operators hesitant to apply these approaches to their mission critical facilities. In this study, a single server was fully submerged horizontally in mineral oil. Experiments were conducted to observe the effects of varying the volumetric flow rate and oil inlet temperature on thermal performance and power consumption of the server. Specifically, temperature measurements of the central processing units (CPUs), motherboard (MB) components, and bulk fluid were recorded at steady-state conditions. These results provide an initial bounding envelope of environmental conditions suitable for an oil immersion data center. Comparing with results from baseline tests performed with traditional air cooling, the technology shows a 34.4% reduction in the thermal resistance of the system. Overall, the cooling loop was able to achieve partial power usage effectiveness (pPUECooling) values as low as 1.03. This server level study provides a preview of possible facility energy savings by utilizing high temperature, low flow rate oil for cooling. A discussion on additional opportunities for optimization of information technology (IT) hardware and implementation of oil cooling is also included.


Sign in / Sign up

Export Citation Format

Share Document