Effect of Nanotegnogenic High-Alumina Raw Materials on the Physical and Mechanical Parameters and Phase Composition of Acid-Resistant Materials

Author(s):  
E. S. Abdrakhimova ◽  
V. Z. Abdrakhimov
Vestnik MGSU ◽  
2019 ◽  
pp. 548-558
Author(s):  
Anton Yu. Kalyadin ◽  
Grigor V. Nalbandyan ◽  
Vadim G. Soloviev ◽  
Anfisa A. Bogdanova ◽  
Valentin A. Ushkov

Introduction. The article considers the enhancement of physical and mechanical parameters of construction mortars used for recovering and repairing of building structures of communication collectors by using low-temperature nonequilibrium plasma. The study vindicated the expediency of treatment of construction mortar raw materials with LTNP to enhance their physical and mechanical parameters. The effect of plasma modification of raw materials on Portland cement phase composition, granulometric composition of the sand and mortar properties are analysed. The influence of multiplicity of silica sand and mixing water plasma treatment on the construction mortar strength is considered. Materials and methods. Cement-sand mortars are obtained from Portland cement of the CEM I 32.5N and CEM I 42.5N brands and silica sand with the fineness moduli of Mf = 0.32 and Mf = 0.63 and a separate fraction of less than 0.16 mm. Setting time and strength of the building mortars are defined according to GOST state standards in effect. Granulometric composition of the cement is explored by means of Analysette-22 particle size microanalyser, while ARL Optim’X spectrometer is used for studying phase composition of the cement stone, silica sand and cement-sand mortars. Results. It is determined that the plasma treatment of Portland cement reduces the grout normal consistency by 15 to 17 % and decreases its setting time by a factor of 3 to 4. Treatment of mixing water with the nonequilibrium low-temperature plasma removes its hardness, forming additional crystallization nuclei. The plasma-treated mixing water increases the curing rate of cement-sand mortars up to 50 % at the early stages of hardening and up to 30 % on the 28th day of hardening. Using plasma-treated silica sand decreases size of its particles and results in partial transition of the crystalline structure into the amorphous one. This reduces water demand of the sand by 10 to 18 %. Conclusions. The expedience of plasma treatment of raw materials to enhance the physical and mechanical properties of mortars is vindicated. Owing to the plasma modification of raw materials, quality and process characteristics of construction mortars are improved. The presented method of the plasma treatment of raw materials used to prepare the construction mortars is characterized with high degree of efficiency and convenience of application.


2010 ◽  
Vol 105-106 ◽  
pp. 778-781
Author(s):  
Yin Feng Xia ◽  
Zhao Hui Huang ◽  
Jia Zheng Yuan ◽  
Lin Jun Wang ◽  
Jie Hua Xie

Crystalline glaze is a kind of art glaze with excellent decorative performance, the existing crystalline glaze mainly willemite crystalline glaze, systems on a single track. In this paper, the use of crystalline glaze raw materials for glass, ZnO and coke gemstones, CuO as coloring agents, using ortho- gonal to determine the formula, this paper researched that added TiO2 to the willemite crystalline glaze crystal phase composition as well as the amount of TiO2 and processing conditions on the preparation of crystalline glaze crystal flower morphology impact. The results show that under the conditions of 1250°C melting 1130°C crystallization process crystal spontaneous growth in crystalline glaze can be able to cover the entire glazed, shape of crystals was feathered, cross growth, the number of crystal increased with crystallization temperature, glaze was smooth and shiny sense. XRD and optical microscopy analysis showed that the precipitation of crystals was the long column of rutile, crystal distributed equality, under a polarizing microscope in purple, green and black, with strong aesthetic values.


2020 ◽  
Author(s):  
Vladimir Perepelitsyn ◽  
Alexander Yagovtsev ◽  
Vitaliy Merzlyakov ◽  
Victor Kochetkov ◽  
Alexander Ponomarenko ◽  
...  

Chemical–mineral and material–genetic classifications of technogenic mineral raw materials including up to 36 polyphase groups of materials that form the basis of secondary resources suitable for the production of refractories and ceramics after additional processing are proposed. It is shown that technogenic materials of the Urals are cheap multifunctional raw materials and can be used in the production of magnesia-silicate ceramics, carbon– and zirconium–containing high-alumina refractories and cements. Keywords: classification, secondary mineral resources, composition, recycling, refractories, ceramics


2020 ◽  
Vol 120 ◽  
pp. 126-133
Author(s):  
V. V. Martynenko ◽  
Yu. A. Krakhmal ◽  
K. I. Kushchenko ◽  
T. G. Tishina

Lightweight materials are widely used in industry for thermal insulation of various thermal units. The choice of lightweight material depends on the specific conditions of service. For the lining of high-temperature units operating in reducing environments, alumina lightweight products are used that contain a minimum amount of Fe2O3 impurities and free (unbound in compounds) SiO2. In JSC “URIR named after A. S. Berezhnoy” a technology of alumina lightweight products of grades KLA-1.1 and KLA-1.3 by a semi-dry pressing method with an application temperature of up to 1550 °C has been developed. These products are made from a mixture of ground and no-milled γ-form alumina of grade 0 and α-form alumina of grade S with additives of pitch coke and chalk. The work purpose was improvement of the alumina lightweight products technology and search for new alternative raw materials along with the currently used alumina grade S. The properties dependence of alumina lightweight products, obtained by the semi-dry pressing method, on the type of alumina α-form, was investigated. As a result of the studies, it was found that, for the manufacture of alumina lightweight products of grades KLA-1.1 and KLA-1.3 by the semi-dry pressing method, alumina grades N and NR can be used as an alternative alumina-containing raw material along with alumina grade S. The phase composition of alumina lightweight products of grades KLA-1.1 and KLA-1.3, which are manufactured using alumina grades S, N and NR, was represented mainly by corundum and calcium hexaluminate. The alumina lightweight products, which were manufactured using alumina grades S, N and NR, were characterized by similar high properties and correspond the technical requirements for grades KLA-1.1 and KLA-1.3.


2012 ◽  
Vol 164 ◽  
pp. 69-72
Author(s):  
Jin Chen ◽  
Xiao Gang Wang ◽  
Hai Yan Zhang

We prepared Solid silicon nitride nanowires using carbon nanotubes as precursors., Si and SiO2 were used as raw materials,the reaction was carried out in ammonia atmosphere The structure, phase composition, ESR properties and oxidation resistance of the sample were investigated. The results showed that the sizes of the nanorods are 60–80 nm in diameter and up to several microns in length. In the products α-Si3N4 is the main component; the FTIR spectra of the silicon nitride nanowires have blue shift phenomena;The ESR properties show that the as made materials contains a large number of unpaired electrons


2014 ◽  
Vol 633 ◽  
pp. 61-64
Author(s):  
Lei Li ◽  
Rui Long Wen ◽  
Xiao Guang Zhang ◽  
Cheng Biao Wang ◽  
Ming Hao Fang ◽  
...  

Cordierite samples were prepared using quartz sand tailings, industrial alumina and magnesite tailings as raw materials by high-temperature reaction. The influence of mineral composition and sintering temperature on the final phase composition and physical properties of cordierite were studied. The results shown that a large number of cordierite generated at 1300 °C. When the ratio of Al2O3/SiO2 equals to 1.08, the flexural strength of samples increased to 27.66 MPa.


1989 ◽  
Vol 4 (2) ◽  
pp. 447-451 ◽  
Author(s):  
J. Majling ◽  
V. Jesenák ◽  
Della M. Roy ◽  
Rustum Roy

A method has been developed for determining the equilibrium phase composition of multicomponent systems at subsolidus conditions and atmospheric pressure, based on the knowledge of binary phase compatibilities and on information concerning the existence and stoichiometry of ternary and higher order compounds. The method, combined with material balance, enables computation of the changes of equilibrium phase compositions of fired products dependent on the proportions of multicomponent raw materials; the procedure is useful for assessing the exploitability of industrial wastes for production of binding materials and ceramics. It is also possible to find the raw material mixture composition needed for the desired phase composition of the fired product.


2018 ◽  
Vol 276 ◽  
pp. 110-115
Author(s):  
Martin Ťažký ◽  
Martin Labaj ◽  
Rudolf Hela

The by-products of energy industry are nowadays often affected by new limits governing the production of harmful gases discharged into the air. These stricter and stricter criteria are often met by electricity producers by changing the combustion process in thermal power plants itself. Nowadays, the SNCR (selective non-catalytic reduction) application is quite common in the combustion process in order to help reduce the nitrogen oxide emission. This article deals with the primary measures of thermal power plants, which in particular consist of a modified treatment of raw materials (coal) entering the combustion process. These primary measures then often cause the formation of fly ash with unsuitable fineness for the use in concrete according to EN 450. The paper presents the comparison of the physico-mechanical parameters of several fly ashes with a different fineness values. The primary task is to assess the impact of non-suitable granulometry in terms of EN 450 on the other physico-mechanical parameters of fly ashes sampled within the same thermal power plant. Several fly ashes produced in the Czech Republic and surrounding countries were evaluated in this way.


2010 ◽  
Vol 97-101 ◽  
pp. 1637-1640 ◽  
Author(s):  
Rong Lin Wang ◽  
Jing Long Bu ◽  
Zhi Fa Wang ◽  
Jia Lin Sun

Zr-Al-O-N composites were prepared in N2 atmosphere at 1600oC with Ca-PSZ and Al powders as raw materials. Phase composition of the composites and formation reaction mechanism were investigated by XRD and SEM analyses. With Al content increaseing from 1% to 50%, phase composition of the composites were changed step by step. The results showed that phase compositions of the composites are related to Al content.


Sign in / Sign up

Export Citation Format

Share Document