Synthesis of trinuclear CuII-complex with tris(4-triphenylmethylphenoxy)-substituted hemihexaphyrazine and radioprotective properties of its water-soluble form

2015 ◽  
Vol 64 (7) ◽  
pp. 1610-1615 ◽  
Author(s):  
E. A. Danilova ◽  
M. K. Islyaikin ◽  
S. Yu. Shtrygol´
Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 503
Author(s):  
Györgyi Horváth ◽  
Eszter Csikós ◽  
Eichertné Violetta Andres ◽  
Tímea Bencsik ◽  
Anikó Takátsy ◽  
...  

Melilotus officinalis is known to contain several types of secondary metabolites. In contrast, the carotenoid composition of this medicinal plant has not been investigated, although it may also contribute to the biological activities of the drug, such as anti-inflammatory effects. Therefore, this study focuses on the isolation and identification of carotenoids from Meliloti herba and on the effect of isolated (all-E)-lutein 5,6-epoxide on primary sensory neurons and macrophages involved in nociception, as well as neurogenic and non-neurogenic inflammatory processes. The composition of the plant extracts was analyzed by high performance liquid chromatography (HPLC). The main carotenoid was isolated by column liquid chromatography (CLC) and identified by MS and NMR. The effect of water-soluble lutein 5,6-epoxide-RAMEB (randomly methylated-β-cyclodextrin) was investigated on Ca2+-influx in rat primary sensory neurons induced by the activation of the transient receptor potential ankyrin 1 receptor agonist to mustard-oil and on endotoxin-induced IL-1β release from isolated mouse peritoneal macrophages. (all-E)-Lutein 5,6-epoxide significantly decreased the percent of responsive primary sensory neurons compared to the vehicle-treated stimulated control. Furthermore, endotoxin-evoked IL-1β release from macrophages was significantly decreased by 100 µM lutein 5,6-epoxide compared to the vehicle-treated control. The water-soluble form of lutein 5,6-epoxide-RAMEB decreases the activation of primary sensory neurons and macrophages, which opens perspectives for its analgesic and anti-inflammatory applications.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2237
Author(s):  
Leonid Kaluzhskiy ◽  
Pavel Ershov ◽  
Evgeniy Yablokov ◽  
Tatsiana Shkel ◽  
Irina Grabovec ◽  
...  

Widespread pathologies such as atherosclerosis, metabolic syndrome and cancer are associated with dysregulation of sterol biosynthesis and metabolism. Cholesterol modulates the signaling pathways of neoplastic transformation and tumor progression. Lanosterol 14-alpha demethylase (cytochrome P450(51), CYP51A1) catalyzes one of the key steps in cholesterol biosynthesis. The fairly low somatic mutation frequency of CYP51A1, its druggability, as well as the possibility of interfering with cholesterol metabolism in cancer cells collectively suggest the clinical importance of CYP51A1. Here, we show that the natural flavonoid, luteolin 7,3′-disulfate, inhibits CYP51A1 activity. We also screened baicalein and luteolin, known to have antitumor activities and low toxicity, for their ability to interact with CYP51A1. The Kd values were estimated using both a surface plasmon resonance optical biosensor and spectral titration assays. Unexpectedly, in the enzymatic activity assays, only the water-soluble form of luteolin—luteolin 7,3′-disulfate—showed the ability to potently inhibit CYP51A1. Based on molecular docking, luteolin 7,3′-disulfate binding suggests blocking of the substrate access channel. However, an alternative site on the proximal surface where the redox partner binds cannot be excluded. Overall, flavonoids have the potential to inhibit the activity of human CYP51A1 and should be further explored for their cholesterol-lowering and anti-cancer activity.


Some of the constituent amino-acids of fibroin (degummed silk) are determined. Special attention is directed to histidine, owing to its use in the calculation of the molecular weight of fibroin. A value of 0⋅45% has been found by methods in which the histidine is isolated as nitranilate or di-(3:4-dichlorobenzenesulphonate). Other values obtained are serine 12⋅6%, threonine 1⋅5%, tyrosine 10⋅6%, and proline 1⋅5%. Hydroxyproline appears to be absent, but the presence of small amounts of some hydroxyamino-acid other than serine and threonine is indicated. The mean residue weight of fibroin is determined by three methods, one of which is a new method based on analysis of the complex formed between fibroin and cupri-ethylenediamine. This method gives a Cu:fibroin-N ratio of 1:1⋅92 and, if allowance is made for co-ordination with the tyrosine hydroxy1 group, an equivalence of 1⋅964 atoms of peptide-nitrogen to 1 atom of copper is obtained. The three methods give an average value of 78⋅0 for the mean residue weight of fibroin. This value, together with the most acceptable data for amino-acid constituents, indicate that the unidentified anhydro-residues (about 20%) have a mean residue weight of about 107. Evidence is presented that fibroin contains no amide-nitrogen. Methods for the determination of amide-nitrogen at present in use, which indicate a content of 1 to 2%, are considered to be unreliable. Fibroin dissolved in cupri-ethylenediamine gives, on neutralization and dialysis of the resulting solution, a water-soluble protein. The production of this water-soluble protein is attended by little or no degradation of the original fibroin as shown by determinations of fluidity, amino-nitrogen, and acid- and alkali-combining power. The water-soluble protein is precipitated by the normal protein-precipitating reagents, but in every instance examined the precipitated material exhibits an insolubility comparable with that of the original fibroin. Factors responsible for the solubilization process are investigated and data for molecular weight, titration values, ultra-violet absorption spectra, reducing activity, optical rotation, tryptic hydrolysis, and viscosity for both soluble and dispersed fibroin are given. Soluble fibroin has [ α ] D 15 — 53⋅1° and dispersed fibroin [ α ] D 15 — 58⋅9°, both in aqueous media. The preparation and properties of films and filaments of fibroin are described. Films of fibroin can be prepared that are water-soluble. On stretching, these films show strain-birefringence, acquire considerable tensile strength, and become insoluble in water, but X-ray examination gives the β -keratin pattern for both the stretched and unstretched films. Reasons are advanced for considering the water-soluble form of fibroin to be the native or renatured protein and the original protein to be the denatured form. The denaturation of fibroin is discussed on the basis that denaturation is essentially an unfolding of a coiled long-chain molecule. The subsequent aggregation of the uncoiled molecules to give an insoluble product is considered to be a secondary process. Some aspects of protein and polypeptide chains as macro-molecules are also discussed.


PEDIATRICS ◽  
1948 ◽  
Vol 1 (4) ◽  
pp. 505-511
Author(s):  
STEWART H. CLIFFORD ◽  
KATHLEEN FAHEY WELLER

Forty-two premature infants were tested for vitamin A absorption after the oral ingestion of 0.5 cc. (35,000 U.S.P. units) of percomorph liver oil. Only three (7%) showed good absorption levels. The mean absorption level found from three to five hours after the test dose was 16 units of vitamin A. Forty-one were tested for vitamin A absorption after the oral ingestion of either 2 cc. or 3 cc. (16,000-24,000 U.S.P. units) of vitamin A in a vehicle of either alcohol or propylene glycol. Of these 37 (90%) showed good absorption levels. The mean absorption level found from three to five hours after the test dose was 85 units of vitamin A. Retrolental fibroplasia could not be prevented from developing in a certain number of premature infants' eyes by the daily oral administration of 5000 U.S.P. of vitamin A in an absorbable water soluble form. Even the addition of 20,000 U.S.P. units of vitamin A in oil by intramuscular injection failed to prevent the development of bilateral retrolental fibroplasia in one infant. If vitamin D follows the same laws of absorption as does vitamin A, the provision of both A and D in a readily absorbable form should be of great practical advantage to the prematurely born infant.


Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1513 ◽  
Author(s):  
Alejandra Wiedeman ◽  
Susan Barr ◽  
Timothy Green ◽  
Zhaoming Xu ◽  
Sheila Innis ◽  
...  

Choline, an essential dietary nutrient for humans, is required for the synthesis of the neurotransmitter, acetylcholine, the methyl group donor, betaine, and phospholipids; and therefore, choline is involved in a broad range of critical physiological functions across all stages of the life cycle. The current dietary recommendations for choline have been established as Adequate Intakes (AIs) for total choline; however, dietary choline is present in multiple different forms that are both water-soluble (e.g., free choline, phosphocholine, and glycerophosphocholine) and lipid-soluble (e.g., phosphatidylcholine and sphingomyelin). Interestingly, the different dietary choline forms consumed during infancy differ from those in adulthood. This can be explained by the primary food source, where the majority of choline present in human milk is in the water-soluble form, versus lipid-soluble forms for foods consumed later on. This review summarizes the current knowledge on dietary recommendations and assessment methods, and dietary choline intake from food sources across the life cycle.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 54
Author(s):  
Joko Tri Wibowo ◽  
Matthias Y. Kellermann ◽  
Lars-Erik Petersen ◽  
Yustian R. Alfiansah ◽  
Colleen Lattyak ◽  
...  

Melanin is a widely distributed and striking dark-colored pigment produced by countless living organisms. Although a wide range of bioactivities have been recognized, there are still major constraints in using melanin for biotechnological applications such as its fragmentary known chemical structure and its insolubility in inorganic and organic solvents. In this study, a bacterial culture of Streptomyces cavourensis SV 21 produced two distinct forms of melanin: (1) a particulate, insoluble form as well as (2) a rarely observed water-soluble form. The here presented novel, acid-free purification protocol of purified particulate melanin (PPM) and purified dissolved melanin (PDM) represents the basis for an in-depth comparison of their physicochemical and biological properties, which were compared to the traditional acid-based precipitation of melanin (AM) and to a synthetic melanin standard (SM). Our data show that the differences in solubility between PDM and PPM in aqueous solutions may be a result of different adjoining cation species, since the soluble PDM polymer is largely composed of Mg2+ ions and the insoluble PPM is dominated by Ca2+ ions. Furthermore, AM shared most properties with SM, which is likely attributed to a similar, acid-based production protocol. The here presented gentler approach of purifying melanin facilitates a new perspective of an intact form of soluble and insoluble melanin that is less chemical altered and thus closer to its original biological form.


2021 ◽  
Vol 58 (2) ◽  
pp. 262-271
Author(s):  
Raghabananda Nayak ◽  
Kumbhakarna Rout ◽  
Mitali Mandal ◽  
Abhiram Dash

A pot culture experiment was conducted by taking soils from a long term fertilizer experimental field to evaluate the contribution of different K fractions towards rice biomass yield and potassium uptake in different long term fertilizer management practices. Twelve different soils were taken for pot culture and graded dose of potassium @ 0, 20, 40, 60, 80 and 100 kg K2O ha-1 was applied. Rice variety Lalat was grown as test crop. The forms of potassium were determined in the surface soil of 0-15 cm after maturity of crop. The result shows that water soluble form of K is the major contributor to biomass yield in soils taken from100% PK, 100% NPKZn, 100% NPKZnB,100% NPKZnS,100% NPK lime and control treated plots of the main field where as exchangeable K is dominant form of K in 100% NPK and 150% NPK. Ammonium acetate K contributes to yield in NPKFYM lime treatment. The nitric acid extractable K is a major contributor to yield in 100% NPKFYM,100% N or100% NP treatment. The water soluble form of K is the major source towards uptake in 150% NPK, NPKFYM lime ,100% NPKZnB, or control. Ammonium acetate K becomes the main source by applying 100% PK,100% NPK,100% NPKZn,100% NPKZnSor 100% NPKlime whereas exchangeable K becomes major contributor by100%N,or 100% NP application and 1 N HNO3 extractable K is the main source of K uptake in NPKFYM treatment. Therefore due importance of different form of potassium should be given in soil test value for better fertilizer management.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 58
Author(s):  
Quyen N. Do ◽  
Robert E. Lenkinski ◽  
Gyula Tircso ◽  
Zoltan Kovacs

The extracellular class of gadolinium-based contrast agents (GBCAs) is an essential tool for clinical diagnosis and disease management. In order to better understand the issues associated with GBCA administration and gadolinium retention and deposition in the human brain, the chemical properties of GBCAs such as relative thermodynamic and kinetic stabilities and their likelihood of forming gadolinium deposits in vivo will be reviewed. The chemical form of gadolinium causing the hyperintensity is an open question. On the basis of estimates of total gadolinium concentration present, it is highly unlikely that the intact chelate is causing the T1 hyperintensities observed in the human brain. Although it is possible that there is a water-soluble form of gadolinium that has high relaxitvity present, our experience indicates that the insoluble gadolinium-based agents/salts could have high relaxivities on the surface of the solid due to higher water access. This review assesses the safety of GBCAs from a chemical point of view based on their thermodynamic and kinetic properties, discusses how these properties influence in vivo behavior, and highlights some clinical implications regarding the development of future imaging agents.


Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 462 ◽  
Author(s):  
Magdalena Kulma ◽  
Michał Dadlez ◽  
Katarzyna Kwiatkowska

Lysenin is a pore-forming toxin of the aerolysin family, which is derived from coelomic fluid of the earthworm Eisenia fetida. Upon binding to sphingomyelin (SM)-containing membranes, lysenin undergoes a series of structural changes promoting the conversion of water-soluble monomers into oligomers, leading to its insertion into the membrane and the formation of a lytic β-barrel pore. The soluble monomer and transmembrane pore structures were recently described, but the underlying structural details of oligomerization remain unclear. To investigate the molecular mechanisms controlling the conformational rearrangements accompanying pore formation, we compared the hydrogen–deuterium exchange pattern between lyseninWT and its mutant lyseninV88C/Y131C. This mutation arrests lysenin oligomers in the prepore state at the membrane surface and does not affect the structural dynamics of the water-soluble form of lysenin. In contrast, membrane-bound lyseninV88C/Y131C exhibited increased structural stabilization, especially within the twisted β-sheet of the N-terminal domain. We demonstrated that the structural stabilization of the lysenin prepore started at the site of lysenin’s initial interaction with the lipid membrane and was transmitted to the twisted β-sheet of the N-terminal domain, and that lyseninV88C/Y131C was arrested in this conformation. In lyseninWT, stabilization of these regions drove the conformational changes necessary for pore formation.


Sign in / Sign up

Export Citation Format

Share Document