Structural variety of CdS in films synthesized by vapor deposition polymerization

2021 ◽  
Vol 70 (9) ◽  
pp. 1699-1705
Author(s):  
O. P. Ivanova ◽  
A. V. Krivandin ◽  
S. A. Zav’yalov ◽  
T. S. Zhuravleva
Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
D.W. Susnitzky ◽  
S.R. Summerfelt ◽  
C.B. Carter

Solid-state reactions have traditionally been studied in the form of diffusion couples. This ‘bulk’ approach has been modified, for the specific case of the reaction between NiO and Al2O3, by growing NiAl2O4 (spinel) from electron-transparent Al2O3 TEM foils which had been exposed to NiO vapor at 1415°C. This latter ‘thin-film’ approach has been used to characterize the initial stage of spinel formation and to produce clean phase boundaries since further TEM preparation is not required after the reaction is completed. The present study demonstrates that chemical-vapor deposition (CVD) can be used to deposit NiO particles, with controlled size and spatial distributions, onto Al2O3 TEM specimens. Chemical reactions do not occur during the deposition process, since CVD is a relatively low-temperature technique, and thus the NiO-Al2O3 interface can be characterized. Moreover, a series of annealing treatments can be performed on the same sample which allows both Ni0-NiAl2O4 and NiAl2O4-Al2O3 interfaces to be characterized and which therefore makes this technique amenable to kinetics studies of thin-film reactions.


Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


Author(s):  
N. J. Tighe ◽  
J. Sun ◽  
R.-M. Hu

Particles of BN,and C are added in amounts of 1 to 40% to SiC and Si3N4 ceramics in order to improve their mechanical properties. The ceramics are then processed by sintering, hot-pressing and chemical vapor deposition techniques to produce dense products. Crack deflection at the particles can increase toughness. However the high temperature strength and toughness are determined byphase interactions in the environmental conditions used for testing. Examination of the ceramics by transmission electron microscopy has shown that the carbon and boron nitride particles have a fibrous texture. In the sintered aSiC ceramic the carbon appears as graphite fiber bundles in the triple junctions and as compact graphite particles within some grains. Examples of these inclusions are shown in Fig. 1A and B.


Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


Author(s):  
M. E. Twigg ◽  
E. D. Richmond ◽  
J. G. Pellegrino

For heteroepitaxial systems, such as silicon on sapphire (SOS), microtwins occur in significant numbers and are thought to contribute to strain relief in the silicon thin film. The size of this contribution can be assessed from TEM measurements, of the differential volume fraction of microtwins, dV/dν (the derivative of the microtwin volume V with respect to the film volume ν), for SOS grown by both chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).In a (001) silicon thin film subjected to compressive stress along the [100] axis , this stress can be relieved by four twinning systems: a/6[211]/( lll), a/6(21l]/(l1l), a/6[21l] /( l1l), and a/6(2ll)/(1ll).3 For the a/6[211]/(1ll) system, the glide of a single a/6[2ll] twinning partial dislocation draws the two halves of the crystal, separated by the microtwin, closer together by a/3.


Author(s):  
K.L. More ◽  
R.A. Lowden ◽  
T.M. Besmann

Silicon nitride possesses an attractive combination of thermo-mechanical properties which makes it a strong candidate material for many structural ceramic applications. Unfortunately, many of the conventional processing techniques used to produce Si3N4, such as hot-pressing, sintering, and hot-isostatic pressing, utilize significant amounts of densification aids (Y2O3, Al2O3, MgO, etc.) which ultimately lowers the utilization temperature to well below that of pure Si3N4 and also decreases the oxidation resistance. Chemical vapor deposition (CVD) is an alternative processing method for producing pure Si3N4. However, deposits made at temperatures less than ~1200°C are usually amorphous and at slightly higher temperatures, the deposition of crystalline material requires extremely low deposition rates (~5 μm/h). Niihara and Hirai deposited crystalline α-Si3N4 at 1400°C at a deposition rate of ~730 μm/h. Hirai and Hayashi successfully lowered the CVD temperature for the growth of crystalline Si3N4 by adding TiCl4 vapor to the SiCl4, NH3, and H2 reactants. This resulted in the growth of α-Si3N4 with small amounts of TiN at temperatures as low as 1250°C.


Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-885-Pr3-892 ◽  
Author(s):  
N. Popovska ◽  
S. Schmidt ◽  
E. Edelmann ◽  
V. K. Wunder ◽  
H. Gerhard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document