The Influence of Warm abc-Pressing on the Structure and Mechanical Properties of Stable Chromium-Nickel-Molybdenum Steel

2018 ◽  
Vol 61 (6) ◽  
pp. 1062-1069 ◽  
Author(s):  
E. G. Astafurova ◽  
S. V. Astafurov ◽  
I. V. Ratochka ◽  
I. P. Mishin ◽  
O. N. Lykova ◽  
...  
Author(s):  
D.N. Makhina ◽  
◽  
V.N. Denisov ◽  
Yu.S. Perminova ◽  
V.N. Butrim ◽  
...  

2019 ◽  
Vol 2019 (10) ◽  
pp. 1031-1035
Author(s):  
D. N. Makhina ◽  
V. N. Denisov ◽  
Yu. S. Perminova ◽  
V. N. Butrim ◽  
S. A. Nikulin

2019 ◽  
Vol 10 (6) ◽  
pp. 1309-1313
Author(s):  
S. A. Golosienko ◽  
N. A. Minyakin ◽  
V. V. Ryabov ◽  
T. G. Semicheva ◽  
E. I. Khlusova

Alloy Digest ◽  
1968 ◽  
Vol 17 (10) ◽  

Abstract ISO-CAST 8 is a cast chromium-molybdenum steel recommended as a general purpose structural alloy of wide application with wide range of mechanical properties. It is used for aircraft and railroad car parts, machine tool and hammermill equipment, gears and shafts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: SA-232. Producer or source: Empire Steel Castings Inc..


Author(s):  
S. A. Golosienko ◽  
N. A. Minyakin ◽  
V. V. Ryabov ◽  
T. G. Semicheva ◽  
E. I. Khlusova

The work covers the effect of niobium, as well as niobium and vanadium together, on mechanical properties of high-strength chromium-nickel-molybdenum steel after thermal improvement (heat treatment). The mechanical properties of steels are determined after applying various tempering temperatures (from 580 to 660°C), durations of tempering (from 1 to 16 hours), and also after quenching from rolling heat and furnace heat with subsequent tempering. It is shown that after quenching and tempering in the temperature range 580– 660°C, simultaneous microalloying by niobium and vanadium, compared to microalloying by niobium alone, increases the yield strength but in significantly decreases toughness and ductility. Quenching from rolling heat increases strength while maintaining high toughness and the increase in strength is most noticeable for steel microalloyed only by niobium.


2010 ◽  
Vol 165 ◽  
pp. 104-109 ◽  
Author(s):  
Vigantas Kumšlytis ◽  
Algirdas Vaclovas Valiulis ◽  
Olegas Černašejus

Presented work analyses the impact of heat treatment parameters on the mechanical properties and operational reliability of P5 (5%Cr0.5%Mo) steel welded joints. The key objects of research are heat-treated chrome-molybdenum steel welded joints and piping elements operated at high temperature for an extensive period of time, where degradation of mechanical properties has been observed. The main objective is to investigate the causes of degradation of alloy steel mechanical properties during fabrication and operation of the equipment, and to develop a methodology for identification of optimum heat treatment parameters for chrome-molybdenum steel welded joints. A few key issues are addressed herein: identification of dependence of chrome-molybdenum (5%Cr-0.5%Mo) steel welded joint mechanical properties on heat treatment parameters, identification of the optimum value of temperature/time parameter, and identification of causes of mechanical property changes and degradation of the steel.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1313
Author(s):  
Oleg Kashin ◽  
Konstantin Krukovskii ◽  
Aleksandr Lotkov ◽  
Victor Grishkov

The paper analyzes the microstructure and mechanical properties of Ti49.8Ni50.2 alloy (at.%) under uniaxial tension at room temperature after isothermal abc pressing to true strains e = 0.29 − 8.44 at T = 723 K. The analysis shows that as the true strain e is increased, the grain–subgrain structure of the alloy is gradually refined. This leads to an increase in its yield stress σy and strain hardening coefficient θ = dσ/dε at linear stage III of its tensile stress–strain curve according to the Hall–Petch relation. However, the ultimate tensile strength remains invariant to such refinement. The possible mechanism is proposed to explain why the ultimate tensile strength can remain invariant to the average grains size (dav). It is assumed that the sharp increase of the ultimate tensile strength σUTS begins when (dav) is less than the critical average grain size (dav)cr. In our opinion, for the investigated alloy (dav)cr ≈ 0.5 µm. In our study, the attained average grain size is larger the critical one. The main idea of the mechanism is next. In alloys with an average grain size (dav) less than the critical one, a higher external stress is required for the nucleation and propagation of the main crack.


Author(s):  
S. V. Аudzeyey

The peculiarity of the rod of chromium-nickel-molybdenum steel grades, used in the production of fasteners and automotive components by cold forming, are the high requirements for the quality of the surface, microstructure and physical and mechanical properties.In the process of development of production technology were developed and implemented measures to minimize the identified design features of heat treatment furnaces, and developed methods for obtaining the most optimal primary hot-rolled metal microstructure for further spheroidizing annealingIn industrial conditions OJSC «BSW – Management Company of Holding «BMC» was mastered the most optimal regimes of heat treatment of wire rod from chromium-nickel-molybdenum steel grades, which required the consumer a full range of physical and mechanical properties of wire rod from steel grades 38ХНГМ, 40XH2MA and 41Х1 used further in the manufacture of fasteners and automotive components by cold forging.


Author(s):  
O. V. Glibenko ◽  
T. V. Vikhareva ◽  
A. V. Ilyin

The ultimate deformation capacity of stainless high-alloyed austenitic nitrogen-containing steel and low-alloyed chromium-nickel-molybdenum steel up to the moment of failure under single and multiple blast loading in the air has been investigated. The paper presents data on the change in the mechanical properties and structure of these steels as a result of explosive loading to the limit and to the specified level of deformation.


Sign in / Sign up

Export Citation Format

Share Document