scholarly journals On the Relationship Between G-Band Bright Point Dynamics and Their Magnetic Field Strengths

Solar Physics ◽  
2016 ◽  
Vol 291 (4) ◽  
pp. 1089-1105 ◽  
Author(s):  
Yunfei Yang ◽  
Qiang Li ◽  
Kaifan Ji ◽  
Song Feng ◽  
Hui Deng ◽  
...  
1967 ◽  
Vol 31 ◽  
pp. 381-383
Author(s):  
J. M. Greenberg

Van de Hulst (Paper 64, Table 1) has marked optical polarization as a questionable or marginal source of information concerning magnetic field strengths. Rather than arguing about this–I should rate this method asq+-, or quarrelling about the term ‘model-sensitive results’, I wish to stress the historical point that as recently as two years ago there were still some who questioned that optical polarization was definitely due to magnetically-oriented interstellar particles.


Author(s):  
Jean-Francois Lestrade ◽  
Robert L. Mutel ◽  
Robert A. Preston ◽  
Robert B. Phillips

1990 ◽  
Vol 138 ◽  
pp. 147-152 ◽  
Author(s):  
T. Tarbell ◽  
S. Ferguson ◽  
Z. Frank ◽  
R. Shine ◽  
A. Title ◽  
...  

On 29 September 1988, filtergrams of the solar photosphere with excellent resolution (0.3 to 0.5 arcsecond) were obtained at the Swedish Solar Observatory on La Palma, Canary Islands. An outstanding 2.5 hour run of digital filtergram observations was obtained, looking at a small area within an active region near disk center. On 6 August 1987, an 80 minute run of similar observations was obtained at the Vacuum Tower Telescope of the National Solar Observatory at Sacramento Peak. Digital and video movies have been made of Dopplergrams, magnetograms, line center, continuum, and white light images. Several examples of magnetic field emergence and formation of flux tubes can be studied in detail in the movies. The relationship between photospheric bright points, “filigree”, the line center brightness, and the magnetic field has been established for individual images in analysis to date.


Author(s):  
K. Mendelssohn ◽  
J. D. Babbitt ◽  
Frederick Alexander Lindemann

Until a year ago it was generally accepted that if a body is made supraconducting while in a magnetic field the lines of magnetic force were "frozen in," i. e ., whatever lines of force passed through the body at the time when it became supraconducting remained there afterwards, unaffected by any change in the external field, so long as the body was supraconducting. Meissner and Ochsenfeld, however, showed that this supposition was not true. They measured field strengths in the immediate neighbourhood of cylinders which had been cooled to supraconductivity in an external magnetic field, and found that the field of force was then of the same nature as that to be expected in the neighbourhood of perfectly diamagnetic bodies. Thus it appeared that when a body becomes supraconducting in a magnetic field the lines of force are all pressed out of the body, and the induction inside the body falls to zero. At the same time, however, these authors report on another experiment, the result of which appears to us not entirely in accordance with the assumption that the induction in the whole body became zero. They measured the field strengths inside and outside a hollow cylinder, after it had become supraconducting in a field perpendicular to its axis, and found again that the field strength outside was as if the cylinder were almost perfectly diamagnetic, but the field inside was appreciably the same as if the cylinder were non-supraconducting. We therefore made a number of experiments, hoping to find out more exactly the nature of the phenomenon.


2012 ◽  
Vol 8 (S294) ◽  
pp. 13-24
Author(s):  
Hongqi Zhang

AbstractThe helicity is important to present the basic topological configuration of magnetic field in solar atmosphere. The distribution of magnetic helicity in solar atmosphere is presented by means of the observational (vector) magnetograms. As the kinetic helicity in the solar subatmosphere can be inferred from the velocity field based on the technique of the helioseismology and used to compare with the magnetic helicity in the solar atmosphere, the observational helicities provide the important chance for the confirmation on the generation of magnetic fields in the subatmosphere and solar dynamo models also. In this paper, we present the observational magnetic and kinetic helicity in solar active regions and corresponding questions, except the relationship with solar eruptive phenomena.


Sign in / Sign up

Export Citation Format

Share Document