Plant regeneration in leaf culture of Centaurium erythraea Rafn. Part 1: The role of antioxidant enzymes

2015 ◽  
Vol 121 (3) ◽  
pp. 703-719 ◽  
Author(s):  
Biljana K. Filipović ◽  
Ana D. Simonović ◽  
Milana M. Trifunović ◽  
Slavica S. Dmitrović ◽  
Jelena M. Savić ◽  
...  
2015 ◽  
Vol 121 (3) ◽  
pp. 721-739 ◽  
Author(s):  
Ana D. Simonović ◽  
Biljana K. Filipović ◽  
Milana M. Trifunović ◽  
Saša N. Malkov ◽  
Vedrana P. Milinković ◽  
...  

Author(s):  
Lyudmila P. Kuzmina ◽  
Anastasiya G. Khotuleva ◽  
Evgeniy V. Kovalevsky ◽  
Nikolay N. Anokhin ◽  
Iraklij M. Tskhomariya

Introduction. Various industries widely use chrysotile asbestos, which determines the relevance of research aimed at the prevention of asbestos-related diseases. It is promising to assess the role of specific genes, which products are potentially involved in the development and regulation of certain links in the pathogenesis of asbestosis, forming a genetic predisposition to the disease. The study aims to analyze the presence of associations of genetic polymorphism of cytokines and antioxidant enzymes with asbestosis development. Materials and methods. Groups were formed for examination among employees of OJSC "Uralasbest" with an established diagnosis of asbestosis and without lung diseases. For each person included in the study, dust exposure doses were calculated considering the percentage of time spent at the workplace during the shift for the entire work time. Genotyping of single nucleotide polymorphisms of cytokines IL1b (rs16944), IL4 (rs2243250), IL6 (rs1800795), TNFα (rs1800629) and antioxidant enzymes SOD2 (rs4880), GSTP1 (rs1610011), CAT (rs1001179) was carried out. Results. The authors revealed the associations of polymorphic variants A511G IL1b gene (OR=2.457, 95% CI=1.232-4.899) and C47T SOD2 gene (OR=1.705, 95% CI=1.055-2.756) with the development of asbestosis. There was an increase in the T allele IL4 gene (C589T) frequency in persons with asbestosis at lower values of dust exposure doses (OR=2.185, 95% CI=1.057-4.514). The study showed the associations of polymorphism C589T IL4 gene and C174G IL6 gene with more severe asbestosis, polymorphism A313G GSTP1 gene with pleural lesions in asbestosis. Conclusion. Polymorphic variants of the genes of cytokines and antioxidant enzymes, the protein products directly involved in the pathogenetic mechanisms of the formation of asbestosis, contribute to forming a genetic predisposition to the development and severe course of asbestosis. Using the identified genetic markers to identify risk groups for the development and intense period of asbestos-related pathology will optimize treatment and preventive measures, considering the organism's characteristics.


1990 ◽  
Vol 38 (2) ◽  
pp. 282-288 ◽  
Author(s):  
Toshimasa Yoshioka ◽  
Teresa Bills ◽  
Tracy Moore-Jarrett ◽  
Harry L. Greene ◽  
Ian M. Burr ◽  
...  

2016 ◽  
Vol 33 (S1) ◽  
pp. s220-s221
Author(s):  
K. MacDowell ◽  
E. Munarriz-Cuezva ◽  
D. Martín-Hernández ◽  
A. Sayd ◽  
B. García-Bueno ◽  
...  

IntroductionAlterations on the innate inflammatory response may underlie the pathophysiology of psychiatric diseases, but the mechanisms implicated remain elusive. Current antipsychotics modulate pro/anti-inflammatory pathways, but the specific mechanisms involved remain elusive. One attractive possibility is the regulation of the intracellular signalling pathways of the innate immune receptors Toll-like 3 (TLR3), which triggers antiviral and inflammatory responses.AimsTo elucidate the regulatory role of paliperidone on maternal immune activation (MIA) induced alterations on TLR3 pathway and on the two emerging endogenous antiinflammatory/antioxidant mechanisms NRF2/antioxidant enzymes pathway and the cytokine milieu regulating M1/M2 polarization in microglia.MethodsPregnant mice were treated with the synthetic Toll-like Receptor 3 (TLR3) agonist Poly(I:C) in gestational day 9 and chronically treated with paliperidone (0,05 mg/kg i.p.) in adult offspring. Animals were sacrificed one day after treatment and behavioral test. Inflammation oxidative stress-related mediators were analysed at mRNA and protein level in prefrontal cortex samples. In addition, behavioral test t-maze was conducted.ResultsPaliperidone prevented TLR3 pathway activation and the subsequent MIA-induced neuroinflammatory response. Also, paliperidone induced an increment in the activity and protein expression of nuclear NRF2, as well as increased mRNA levels of the antioxidant enzymes HO1, SOD and catalase in the MIA model. Otherwise, paliperidone increases the antiinflammatory cytokines levels TGFβ and IL-10 in favour of a M2 microglia profile and increased the levels of the M2 cellular markers ArgI and FOLR2.ConclusionsThe modulation of neuroinflammation and enhancement of endogenous antioxidant/anti-inflammatory pathways by current and new antipsychotics could represent an interesting therapeutic strategy for the future.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2003 ◽  
Vol 284 (1) ◽  
pp. H277-H282 ◽  
Author(s):  
Steven P. Jones ◽  
Michaela R. Hoffmeyer ◽  
Brent R. Sharp ◽  
Ye-Shih Ho ◽  
David J. Lefer

Reactive oxygen species induce myocardial damage after ischemia and reperfusion in experimental animal models. Numerous studies have investigated the deleterious effects of ischemia-reperfusion (I/R)-induced oxidant production using various pharmacological interventions. More recently, in vitro studies have incorporated gene-targeted mice to decipher the role of antioxidant enzymes in myocardial reperfusion injury. We examined the role of cellular antioxidant enzymes in the pathogenesis of myocardial I/R (MI/R) injury in vivo in gene-targeted mice. Neither deficiency nor overexpression of Cu-Zn superoxide dismutase (SOD) altered the extent of myocardial necrosis. Overexpression of glutathione peroxidase did not affect the degree of myocardial injury. Conversely, overexpression of manganese (Mn)SOD significantly attenuated myocardial necrosis after MI/R. Transthoracic echocardiography was performed on MnSOD-overexpressing and wild-type mice that were subjected to a more prolonged period of reperfusion. Cardiac output was significantly depressed in the nontransgenic but not the transgenic MnSOD-treated mice. Anterior wall motion was significantly impaired in the nontransgenic mice. These findings demonstrate an important role for MnSOD but not Cu/ZnSOD or glutathione peroxidase in mice after in vivo MI/R.


2019 ◽  
Vol 32 ◽  
pp. 80-89
Author(s):  
Jameel H. Hiji ◽  
Abbas M. Jasim ◽  
Awatif N. Jerry

The experiment was conducted during 2017-2018 and 2018-2019 winter seasons at Abu Al-Khaseeb District at basrah /Iraq on sandy loam soil  to study the effect of sulfur at five concentration ( 0 , 500 , 1000, 1500 and 2000) kg. Ha-1, clean salt at three concentration (0, 0.5 and 1.0) ml. L-1, two cultivars of lettuce local and fajr and interaction among them  at electrical conductivity of the irrigation water (7.85 and 9.69) dS.m-1.  Result showed significant reduction in the activity of catalase (CAT) and peroxidase (POD) enzymes and proline content in all treatments of sulfur and clean salt especially at 2000 Kg. Ha-1 sulfur and clean salt at 1.0 ml L-1had significantly decrease in CAT activity (295.80 ? 341.65) U mg–1 FW, POD activity (7.86? 8.98) U mg–1 FW and proline (0.50 ? 0.80) mg g-1DW, comparing with control of CAT activity (663.21, 814.65) U mg–1 FW and POD activity (13.83, 15.52) mg–1 FW and proline (1.19, 2.03) mg g-1DW, respectively for two seasons due to the role of sulfur and clean salt ameliorates the adverse effects of salinity on plants. Fajr lettuce is more salt-tolerant than local due to less antioxidant enzyme levels POD, CAT and proline.


2017 ◽  
Vol 8 (1) ◽  
pp. 23 ◽  
Author(s):  
PeterO Ajayi ◽  
MohammedT Salman ◽  
AbdullateefI Alagbonsi ◽  
LawrenceA Olatunji
Keyword(s):  

2020 ◽  
Vol 42 (6) ◽  
pp. 875-875
Author(s):  
Erum Shireen Erum Shireen ◽  
Wafa Binte Ali Wafa Binte Ali ◽  
Maria Masroor Maria Masroor ◽  
Shamim A Qureshi Shamim A Qureshi ◽  
Sehrish Kiran Sehrish Kiran ◽  
...  

Rauwolfia Serpentina is a medicinal herb used for hypertension and psychotic disorders. In this study neuroprotective effects of Rauwolfia serpentina plant extract following the exposure to acute immobilization (2h) stress in rats were investigated. The extract of the plant administered orally at non-sedative dose 30mg/kg before immobilization (2h) to observe stress induced behavioral deficits. Neuroprotective efficacy of extract was assessed in terms of alteration in activities of antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT). We also monitored leptin, corticosterone and glucose levels in plasma to obtain an imminent role of Rauwolfia serpentina. Animals were orally administered with Rauwolfia serpentina (30mg/kg) while controls receive saline (1ml/kg). Each group was subdivided into stressed and unstressed groups. Behavioral deficits were monitored in the open field and light dark activity box. Animals were decapitated; plasma samples were collected for CAT, SOD, corticosterone, leptin and glucose estimation. Orally administered Rauwolfia serpentina attenuates stress induced behavioral deficits and rise antioxidant enzymes levels. Plant extract also prevents the stress-induced increase in corticosterone but glucose levels do not manifest any significant change. Immobilization stress (2h) induced decrease of plasma leptin levels were reversed by Rauwolfia serpentina. Therefore, the present study suggests that Rauwolfia serpentina has potentiality to antagonize undesirable effects of immobilization stress (2h) by reducing stress perception and inhibitory effects of stress on the activity of hypothalamic pituitary adrenal (HPA) axis and animal behaviors. Despite an apparent role of Rauwolfia serpentina the mechanism of action at molecular level causing the acute anxiolytic effects of oral administration of plant extract remains to be determined.


Author(s):  
Yang Zhou ◽  
Shousheng Ni ◽  
Congjun Li ◽  
Lili Song ◽  
Shicui Zhang

Abstract Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been shown to have rejuvenation and anti-aging properties, but little information is available regarding the role of GDF11 in reproductive system to date. In this study, we first confirmed the bioavailability of recombinant GDF11 (rGDF11) by oral delivery in mice. We also showed that dietary intake of rGDF11 had little influence on body and gonadal (ovary/testis) weights of recipient mice, indicating their general condition and physiology were not affected. Based on these findings, we started to test the function of rGDF11 in ovary and testis of mice and to explore the underlying mechanisms. It was found that to some extent, rGDF11 could attenuate the senescence of ovarian and testicular cells, and contribute to the recovery of ovarian and testicular endocrine functions. Moreover, rGDF11 could rescue the diminished ovarian reserve in female mice and enhance the activities of marker enzymes of testicular function (SDH and G6PD) in male mice, suggesting a potential improvement of fertility. Notably, rGDF11 markedly promoted the activities of antioxidant enzymes in the ovary and testis, and remarkably reduced the levels of lipid peroxidation, protein oxidation and ROS in the ovary and testis. Collectively, these results suggest that GDF11 can protect ovarian and testicular functions of aged mice via slowing down the generation of ROS through enhancing activities of antioxidant enzymes.


Sign in / Sign up

Export Citation Format

Share Document