A Permeability–Throat Diameter Correlation for a Medium Generated with Delaunay Tessellation and Voronoi Algorithm

2020 ◽  
Vol 132 (1) ◽  
pp. 201-217 ◽  
Author(s):  
Ángel Encalada ◽  
Julio Barzola-Monteses ◽  
Mayken Espinoza-Andaluz
Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


2015 ◽  
Vol 667 ◽  
pp. 449-454
Author(s):  
Yang Hong ◽  
Xiang Zhang ◽  
Dong Xiang Shao ◽  
Guang Lin Wang ◽  
Li Sun

This paper proposes a hydraulic measurement model for measuring the Laval nozzle throat diameter size. Based on measurement principle of liquid pressure – flowrate, we can get the size of Laval nozzle throat diameter by measuring the fluid flowrate through hydraulic measurement model at the fixed pressure. With good viscosity-temperature performance, low temperature performance and oxidation stability, UCBO aviation hydraulic oil is selected as the measuring medium. In the hydraulic measurement model, the diameter of the mandrel which can be regarded as gauge will directly affect the sensitivity of diameter measurement. Therefore we need to optimize the design of the mandrel of the hydraulic model.


Author(s):  
K. Sakaki ◽  
Y. Shimizu ◽  
Y. Gouda ◽  
A. Devasenapathi

Abstract Effect of nozzle geometry (such as throat diameter of a barrel nozzle, exit diameter and exit divergence angle of a divergent nozzle) on HVOF thermal spraying process (thermodynamical behavior of combustion gas and spray particles) was investigated by numerical simulation and experiments with Jet KoteTM II system. The process changes inside the nozzle as obtained by numerical simulation studies were related to the coating properties. A NiCrAIY alloy powder was used for the experimental studies. While the throat diameter of the barrel nozzle was found to have only a slight effect on the microstructure, hardness, oxygen content and deposition efficiency of the coatings, the change in divergent section length (rather than exit diameter and exit divergence angle) had a significant effect. With increase in divergent section length of the nozzle, the amount of oxide content of the NiCrAIY coatings decreased and the deposition efficiency increased significantly. Also, with increase in the exit diameter of the divergent nozzle, the gas temperature and the degree of melting of the particle decreased. On the other hand the calculated particle velocity showed a slight increase while the gas velocity increased significantly.


2011 ◽  
Vol 130-134 ◽  
pp. 1703-1707 ◽  
Author(s):  
Xiao Chun Dai ◽  
Jian Huo

The aim of the paper is to reveal the flow structure and the mixing process of a steam-jet pump by using a computational fluid dynamics code FLUENT. Discusses the effect on a steam-jet pump’s entrainment ratio when the throat diameter of the primary nozzle as well as the outlet diameter of the primary nozzle is varied. Analyzes the position of shock wave which will bring the steam-jet pump’s performance a great loss. The performances of a steam-jet pump are studied by changing back pressures while the distance between primary nozzle outlet and mixing chamber inlet (DPM) is varied. The entrainment ratios of a steam-jet pump with different values of DPM and different back pressures are calculated.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Guannan Liu ◽  
Dayu Ye ◽  
Feng Gao ◽  
Jishan Liu

In the process of coalbed methane exploitation, the fracture and pore structure is the key problem that affects the permeability of coalbed. At present, the coupling effect of fracture and pore structure and in situ stress is seldom considered in the study of coal seam permeability. In this paper, the fractal seepage model is coupled with coal deformation, and the adsorption expansion effect is considered. A multifield coupling model considering the influence of matrix and fracture structure is established. Then, the influence of pore structure parameters of main fracture on macropermeability is analyzed, including (1) fractal dimension of fracture length, (2) maximum fracture length, (3) fractal dimension of throat diameter, and (4) fractal dimension of throat bending. At the same time, the simulation results are compared with the results of Darcy’s uniform permeability model. The results show that the permeability calculated by the proposed model is significantly different from that calculated by the traditional cubic model. Under the action of in situ stress, when the porosity and other parameters remain unchanged, the macropermeability of coal is in direct proportion to the fractal dimension of coal fracture length, the fractal dimension of throat diameter, and the maximum fracture length and in inverse proportion to the fractal dimension of coal throat curvature.


Sign in / Sign up

Export Citation Format

Share Document