Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites

2014 ◽  
Vol 55 (3) ◽  
pp. 393-404 ◽  
Author(s):  
Zengshi Xu ◽  
Xiaoliang Shi ◽  
Qiaoxin Zhang ◽  
Wenzheng Zhai ◽  
Xixing Li ◽  
...  
2017 ◽  
Vol 27 (1) ◽  
pp. 194-201 ◽  
Author(s):  
Xiyao Liu ◽  
Qiao Shen ◽  
Xiaoliang Shi ◽  
Jialiang Zou ◽  
Yuchun Huang ◽  
...  

2021 ◽  
Vol 1021 ◽  
pp. 78-86
Author(s):  
Hussein M. Ali ◽  
Qussay Y. Hamid ◽  
Thaer F.A. Al-Sultan

In the present work, an experimental investigation has been made of a dry sliding wear rate for aluminum, aluminum alloy (Al-Fe-V-Si), bronze, stainless steel 304 and structural steel ASTM A36, using a pin-on-disk apparatus under the effect of sliding speed and time at constant load. The materials were tested on two types of abrasive surfaces with a grit surface of 24 and 36. The applied load was equal to 2500 grams and the same load was used for all of the pins that were tested. The relative wear was indicated by the loss in length and loss in mass. The results show that the wear rate will directly proportional with sliding speed and time, and the stainless steel has less wear rate than the other materials.


2007 ◽  
Vol 353-358 ◽  
pp. 840-843 ◽  
Author(s):  
Yeong Sik Kim ◽  
Kyun Tak Kim

This study aims at investigating the effect of the sliding speed and the applied load on the dry sliding wear behavior of thermally sprayed Ni-based self-flux alloy coating. Ni-based self-flux alloy powders were flame-sprayed onto a carbon steel substrate and then these coatings were heat-treated at temperature of 1000 oC. Dry sliding wear tests were performed using the sliding speeds of 0.2, 0.4, 0.6 and 0.8 m/s and the applied loads of 5, 10, 15 and 20 N. AISI 52100 ball (diameter 8 mm) was used as counterpart material. Wear behavior of Ni-based self-flux alloy coatings was studied using a scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that microstructure and wear behavior of the Ni-based self-flux alloy coatings were much influenced by the sliding speed and the applied load.


2014 ◽  
Vol 554 ◽  
pp. 416-420
Author(s):  
Bin Yusoff Zamri ◽  
Yusoff Azmi

The correlation between applied load and sliding speed on the wear behavior of tamarind wood was analyzed using statistical analysis. Dry sliding wear tests were conducted using the block-on-roller technique while mass loss was measured by using a micro balancer. The test specimens measured 20 mm by 20 mm by 10 mm and were made of tamarind wood. The roller which acted as the counter surface material was made of mild steel (120 HV), cut from a commercial mild steel bar (50 mm in diameter) measuring 300 mm in length. Dry sliding wear tests on tamarind wood was conducted using different sliding velocities (60 rpm, 95 rpm and 145 rpm) and applied using different loads (10 N, 20 N and 30 N). The test results were analyzed and inferred using linear correlation and regression. The results suggest that sliding speed and applied load have a significant and positive influence on mass loss. A direct correlation between applied load and sliding speed on the mass loss of tamarind wood was evident. Regression analysis indicated that the contribution of applied load and sliding speed on the mass loss of tamarind wood under dry sliding was at 82.6%.


2007 ◽  
Vol 353-358 ◽  
pp. 844-847 ◽  
Author(s):  
Yeong Sik Kim ◽  
Kyun Tak Kim ◽  
Seon Jin Kim

SiC particulates reinforced Al matrix composites were fabricated by thermal spray process, and the dry sliding wear behavior against four different counterparts was investigated under a varying of the sliding speed and the applied load conditions. Al/SiC composites were fabricated by flame spraying, and the dry sliding wear tests were performed using the sliding speed of 0.4 m/s and 0.8 m/s at the applied load of 3 N. Sliding distance was kept at 1000 m for all the tests. Al2O3, ZrO2, Si3N4 and AISI 52100 balls were used as the counterparts. Wear tracks on the Al/SiC composites were investigated using scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear behavior of Al/SiC composites was much influenced by counterpart materials.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2965
Author(s):  
Sandeep Agrawal ◽  
Nishant K. Singh ◽  
Rajeev Kumar Upadhyay ◽  
Gurminder Singh ◽  
Yashvir Singh ◽  
...  

In recent years, the engineering implications of carbon nanotubes (CNTs) have progressed enormously due to their versatile characteristics. In particular, the role of CNTs in improving the tribological performances of various engineering materials is well documented in the literature. In this work, an investigation has been conducted to study the tribological behaviour of CNTs filled with glass-reinforced polymer (GFRP) composites in dry sliding, oil-lubricated, and gaseous (argon) environments in comparison to unfilled GFRP composites. The tribological study has been conducted on hardened steel surfaces at different loading conditions. Further, the worn surfaces have been examined for a particular rate of wear. Field-emission scanning electron (FESEM) microscopy was used to observe wear behaviours. The results of this study explicitly demonstrate that adding CNTs to GFRP composites increases wear resistance while lowering friction coefficient in all sliding environments. This has also been due to the beneficial strengthening and self-lubrication properties caused by CNTs on GFRP composites, according to FESEM research.


2016 ◽  
Vol 1136 ◽  
pp. 573-578 ◽  
Author(s):  
Su Lin Chen ◽  
Bin Shen ◽  
Fang Hong Sun

The present study reports the influence of graphene layers on the tribological performance of CVD diamond films when they are used as the solid lubricants. Friction tests are conducted on a ball-on-plate friction tester, where the stainless steel is used as the counterpart material. The CVD diamond film sample is a typical microcrystalline diamond (MCD) coating which is deposited on a flat tungsten carbide substrate using the hot filament chemical vapor deposition method (HFCVD). Besides the MCD sample, a polished MCD film (pMCD) and a polished tungsten carbide (pWC) are also adopted in frictional tests, aiming at illustrating the influence of the surface morphology, as well as the physical property, of the sample on the lubricative effect of graphene layers. The experimental results show that graphene layers can effectively reduce the coefficient of friction (COF), regardless of the samples. The MCD sample presents the lowest stable COF, which is 0.13, in dry sliding period when the graphene flakes are sparyed on the sliding interface; while the pMCD and pWC samples exhibit slightly higher COFs, which are 0.16 and 0.18, respectively. Comparatively, the COFs of these three samples obtained in dry sliding process without graphene are 0.20, 0.25 and 0.64. In additon, the MCD sample exhibits a much longer stable dry slidng process which is more than 5000 cycles. Comparatively, the other two tribo-pairs only exhibit a stable low-COF dry sliding period for around 2000 cycles. The reduction of COF could be attributed to the graphene flakes adhered on the sliding interface. It forms a layer of solid lubricative film with extremely low shear strength and significantly decreases the interactions between two contacted surfaces. The rugged surface of the MCD film provides sufficient clogging locations for graphene flakes, which allows the generated lubricative film enduring a long sliding duration. It can be arrived from this study that the tribological properties of the MCD film could be enhanced by simply adoping graphene layers as a solid lubricant. Furthermore, an improved performance of a variety of MCD coated cutting tools or mechanical components could be expected when they are utilized with graphene layers.


Author(s):  
Dong shan Li ◽  
Ning Kong ◽  
Ruishan Li ◽  
Boyang Zhang ◽  
Yongshun Zhang ◽  
...  

Abstract Judicious selection of additives having chemical and physical compatibility with the DLC films may help improving the triboligical properties and durability life of DLC-oil composite lubrication systems. In this study, Cu nanoparticles were added to PAO6 base oil to compose a solid-liquid composite lubrication system with W-DLC film. The effects of nanoparticle concentration, test temperature and applied load on tribological performance were systematically studied by a ball-on-disk friction test system. The tribological results illustrated that Cu nanoparticles could lower the coefficient of friction (COF) and dramatically reduce the wear rates of W-DLC films. The optimal tribological behavior was achieved for the 0.1 wt.% concentration under 30 ℃ and the applied load of 100 N. The test temperature and applied load were vital influencing factors of the solid–liquid lubrication system. The bearing effect and soft colloidal abrasive film of spherical Cu nanoparticle contributed to the excellent tribological performance of the composite lubrication system under mild test conditions, meanwhile, the local delamination of W-DLC film and oxidation were the main causes of the friction failure under harsh test conditions. With test temperature and applied loads increase the degree of graphitization of the W-DLC film increased. In conclusion, there are several pivotal factors affecting the tribological performance of solid–liquid lubrication systems, including the number of nanoparticles between rubbing contact area, graphitization of the worn W-DLC films, tribofilms on the worn ball specimens and oxidation formed in friction test, and the dominant factor is determined by the testing condition.


2014 ◽  
Vol 592-594 ◽  
pp. 1305-1309 ◽  
Author(s):  
K. Rajkumar ◽  
S. Aravindan

Effects of graphite content, and sliding speed on the tribological characteristics of copper-graphite composites under dry sliding condition were evaluated using a pin-on-disc tribometer. The worn surfaces of the composites were analyzed through Scanning Electron Microscopy (SEM). The experimental results revealed the improvement in wear resistance with increasing graphite content. The friction coefficient is also gradually decreasing upto 25 vol% graphite. Sliding speed has an effect on copper (5-15 vol%) graphite composites where as sliding speed has no effect in copper-(20-30 vol%) graphite composites. This difference is attributed to availability of self-lubricating graphite layer at the contact zone.


2020 ◽  
Vol 29 (6) ◽  
pp. 3995-4008
Author(s):  
Hongyan Zhou ◽  
Xiaoliang Shi ◽  
Ahmed Mohamed Mahmoud Ibrahim ◽  
Guanchen Lu ◽  
Zhenyu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document