Contrasting strategies for tree species to cope with heat and dry conditions at urban sites

2016 ◽  
Vol 20 (4) ◽  
pp. 853-865 ◽  
Author(s):  
Sten Gillner ◽  
Sandra Korn ◽  
Mathias Hofmann ◽  
Andreas Roloff
Author(s):  
G. N. Gordeeva

Criteria for using natural material of tree species were selected for the introduction in the dry conditionsof Khakasia by taking species of the genus Sorbus L. as an example. According to the analysis of long-term data ofthe growth and development rhythm of plants, winter hardiness and drought-resistance scoring, main criteria for thepreliminary selection in the arboretum of Khakassiahave been revealed: species native ranges, species winter-hardiness,length of growing period and annual precipitation.


2021 ◽  
Vol 7 (2) ◽  
pp. 112
Author(s):  
Maria Caballol ◽  
Dora Štraus ◽  
Héctor Macia ◽  
Xavier Ramis ◽  
Miguel Á. Redondo ◽  
...  

Halophytophthora species have been traditionally regarded as brackish water oomycetes; however, recent reports in inland freshwater call for a better understanding of their ecology and possible pathogenicity. We studied the distribution of Halophytophthora fluviatilis in 117 forest streams by metabarcoding river filtrates taken in spring and autumn and by direct isolation from floating leaves. Pathogenicity on six Fagaceae species and Alnus glutinosa was assessed by stem inoculations. The distribution of H. fluviatilis was correlated with high mean annual temperatures (>93.5% of reports in Ta > 12.2 °C) and low precipitation records. H. fluviatilis was therefore widely distributed in forest streams in a warm–dry climate, but it was mostly absent in subalpine streams. H. fluviatilis was primarily detected in autumn with few findings in spring (28.4% vs. 2.7% of streams). H. fluviatilis was able to cause small lesions on some tree species such as Quercus pubescens, Q. suber and A. glutinosa. Our findings suggest that H. fluviatilis may be adapted to warm and dry conditions, and that it does not pose a significant threat to the most common Mediterranean broadleaved trees.


ISRN Botany ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Alexander Staunch ◽  
Marie Redlecki ◽  
Jessica Wooten ◽  
Jonathan Sleeper ◽  
Jonathan Titus

To assess germination success in different microsites of a forested wetland environment, seeds of three common western New York wetland tree species, Acer x freemanii, Fraxinus pennsylvanica, and Ulmus americana, were sown into flats in the greenhouse with three substrates (mosses Hypnum imponens or Thuidium delicatulum or bare soil) and three hydrological conditions (wet, moist, or dry) in a factorial design. For the three species both treatment regimes and the interaction were highly significant, except for Acer, in which the substrate regime was not significant. Fraxinus germination had the highest tolerance for wet conditions and lowest for dry conditions followed by Acer and then Ulmus. Significant interactions showed that the effect of hydrological regime on germination is influenced by substrate type. Moss decreased germination under drier conditions and increased germination under wet conditions by lifting the seeds away from the soil and creating drier conditions than on bare soil. It is also possible that interspecific competition for moisture played a role in decreasing germination under dry conditions. By influencing the regeneration niche for three major tree species of swamps in the northeastern United States, the bryophyte layer plays an important role in determining community composition.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caroline Signori-Müller ◽  
Rafael S. Oliveira ◽  
Fernanda de Vasconcellos Barros ◽  
Julia Valentim Tavares ◽  
Martin Gilpin ◽  
...  

AbstractNon-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradient. During the wet season, total NSC (NSCT) concentrations in both organs were remarkably similar across communities. However, NSCT and its soluble sugar (SS) and starch components varied much more across sites during the dry season. Notably, the proportion of leaf NSCT in the form of SS (SS:NSCT) increased greatly in the dry season in almost all species in the driest sites, implying an important role of SS in mediating water stress in these sites. This adjustment of leaf NSC balance was not observed in tree species less-adapted to water deficit, even under exceptionally dry conditions. Thus, leaf carbon metabolism may help to explain floristic sorting across water availability gradients in Amazonia and enable better prediction of forest responses to future climate change.


Author(s):  
Kristin Nerlich ◽  
Martin Gauder ◽  
Frieder Seidl ◽  
Klaus Mastel ◽  
Jens Möhring ◽  
...  

Due to lack of detailed information on the suitability of short rotation coppice (SRC) species for different climatic regions, over four years this study investigated tree growth and susceptibility to pests and diseases of willow (Salix spp.) and poplar (Populus spp.) clones and other tree species like Alnus spp. and Robinia pseudoacacia at four sites located in southwestern Germany. The study was undertaken in order to deduce the kind of tree species recommended for the various site conditions. In 2009, field trials were established at four sites which differ in climate and soil characteristics (Forchheim, Kupferzell, Marbach and Aulendorf). At all tested locations, a high survival rate (>90 %) was observed for almost all willow and poplar clones and little infestations with leaf rust (Melampsora) and minor leaf damages caused by the poplar leaf beetle (Chrysomela populi) had occurred. The survival of the other tree species varied from 22 to 97 % depending on the site and species. Across all tree species and locations, results indicated that willow clones can be recommended for cold sites and poplars generally seem to require higher temperatures. The Alnus spp. seems to be favorable for both cold and warm conditions while Robinia pseudoacacia can be recommended for warm sites. Due to its chilling sensitivity, Paulownia tomentosa seems to be rather unsuitable for cultivation in southwestern Germany. For all tested sites, it appears that those with heavy soils and dry conditions are inappropriate for establishing SRC species.


2018 ◽  
Vol 21 (6) ◽  
pp. 1171-1188 ◽  
Author(s):  
H. Sjöman ◽  
A. D. Hirons ◽  
N. L. Bassuk

1995 ◽  
Vol 95 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Elena Toll ◽  
Federico J. Castillo ◽  
Pierre Crespi ◽  
Michele Crevecoeur ◽  
Hubert Greppin

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1261-1268
Author(s):  
Shu Otani ◽  
Dang-Trang Nguyen ◽  
Kozo Taguchi

In this study, a portable and disposable paper-based microbial fuel cell (MFC) was fabricated. The MFC was powered by Rhodopseudomonas palustris bacteria (R. palustris). An activated carbon sheet-based anode pre-loaded organic matter (starch) and R. palustris was used. By using starch in the anode, R. palustris-loaded on the anode could be preserved for a long time in dry conditions. The MFC could generate electricity on-demand activated by adding water to the anode. The activated carbon sheet anode was treated by UV-ozone treatment to remove impurities and to improve its hydrophilicity before being loaded with R. palustris. The developed MFC could generate the maximum power density of 0.9 μW/cm2 and could be preserved for long-term usage with little performance degradation (10% after four weeks).


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


Sign in / Sign up

Export Citation Format

Share Document