scholarly journals Efficacy of Woodchip Biochar and Brown Coal Waste as Stable Sorbents for Abatement of Bioavailable Cadmium, Lead and Zinc in Soil

2020 ◽  
Vol 231 (10) ◽  
Author(s):  
C. Amoah-Antwi ◽  
J. Kwiatkowska-Malina ◽  
E. Szara ◽  
S. Thornton ◽  
O. Fenton ◽  
...  

Abstract Organic sorbents alter physicochemical soil properties and mitigate heavy metal (HM) bioavailability. However, some sorbents are labile and, therefore, introduce the risk of HM release into soil after mineralisation. Before field application, new stable organic sorbents such as woodchip biochar (BIO) and brown coal waste (BCW) need to be tested and compared with standard organic amendments like farmyard manure (FYM). An incubated pot experiment was conducted to investigate the efficacy of FYM, BIO and BCW (added to soil in pots at 5 and 10% w/w) to alter soil physicochemical properties and mitigate bioavailability of Cd, Pb and Zn spiked in treatments at different doses (in mg kg−1); 0 (not spiked), 1 (1 Cd, 70 Pb, 100 Zn) and 2 (3 Cd, 500 Pb, 700 Zn), and incubated for 9 weeks. At the end of the experiment, the EDTA-extractable HM fractions, pH, cation exchange capacity (CEC) and specific surface area (SSA, to check trends) were determined in all treated soils. Results showed that FYM, BCW and BIO generally improved all soil properties (except reduced pH from BCW and apparent SSA reduction from FYM) and accounted for respective maximum abatements of Cd (50.2, 69.9 and 25.5%), Pb (34.2, 64.3 and 17.4%) and Zn (14.9, 17.7 and 11.8%) bioavailability in soil. FYM and BCW were more effective at 10% w/w especially in the low contaminated soil, whereas the highest efficacy for BIO was at 5% w/w and in the high contaminated soil. The efficacies of sorption by the organic sorbents varied for different HMs and were in the orders: BCW > FYM > BIO for Cd, FYM > BCW > BIO for Pb and BIO > BCW > FYM for Zn. Soil pH and CEC were strongly correlated with HM bioavailability in all treatments and implied that immobilisation of HMs occurred via complex formation, ion exchange and pH-dependent specific adsorption. All three sorbents were beneficial as soil amendments, and in terms of HM mitigation, BCW had the highest efficacy, followed by FYM and then BIO. Considering the documented high soil stability of BCW and BIO, these results are promising for further trialling at field scale.

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 759
Author(s):  
Diego Baragaño ◽  
José Luis R. Gallego ◽  
Gaspar Baleriola ◽  
Rubén Forján

The demand for soils for recreational uses, gardening, or others in urban and periurban areas is increasing, and thus the presence of polluted technosols in these areas requires nature-based in situ remediation technologies. In this context, the capacity of three amendments, namely zero valent iron nanoparticles (nZVI), compost and a mixture of compost and biochar, to immobilise As in a polluted technosol simultaneously cultivated with Lolium perenne L. were tested and compared. The characteristics of the soil were comprehensively characterised by chemical and X-ray analysis to determine As contents, distribution, and mineralogy. As mobility was evaluated by the RBA methodology and then potential human health risks, both carcinogenic and non-carcinogenic, were assessed in all treatments. The nZVI treatment reduced risks due to the As immobilisation obtained (41% As decrease, RBA test), whereas the organic amendments did not imply any significant reduction of the RBA values. As to soil properties, the organic treatments applied lowered the pH values, increasing cation exchange capacity, and carbon and nutrient contents. To determine impacts over plant production, fresh biomass, As, Ca, Fe, K, Mg, Na and P were measured in Lolium under the different treatments. Notably, organic amendments improved As extraction by plants (57% increase), as well as fresh biomass (56% increase). On the contrary, nZVI diminished As extraction (65% decrease) and promoted a fresh biomass decrease of 57% due to nutrients immobilisation (61% decrease of P in plants tissues).


Soil Research ◽  
2008 ◽  
Vol 46 (2) ◽  
pp. 141 ◽  
Author(s):  
Joginder Kaur ◽  
O. P. Choudhary ◽  
Bijay-Singh

Long-term sodic-water irrigation may adversely affect the quality of soil organic carbon along with some soil properties. The extent to which the adverse effects can be ameliorated through the use of gypsum and amendments needs to be known. Soil properties and microbial biomass carbon (MBC) were studied after 14 years of sodic water (SW) irrigation and application of different levels of gypsum, farmyard manure (FYM), green manure (GM), and wheat straw (WS) to a sandy loam soil. Irrigation with SW increased pH, electrical conductivity, sodium adsorption ratio, exchangeable sodium percentage (ESP), and bulk density, and decreased final infiltration rate of soil. Application of gypsum and organic amendments reversed these trends. Decrease in MBC due to SW irrigation was from 132.5 to 44.6 mg/kg soil in the 0–75 mm soil layer and from 49.0 to 17.3 mg/kg soil in the 75–150 mm soil layer. Application of gypsum and organic amendments significantly increased MBC; GM and FYM were more effective than WS. Changes in soil ESP explained 85 and 75% variation in MBC in the unamended and organically amended SW treatments, respectively. Soil pH as additional variable improved the predictability of MBC to 96% and 77%. Irrigation with SW reduced yield of rice plus wheat by 5 t/ha. Application of gypsum and organic amendments significantly increased the rice and wheat yield; it was significantly correlated with MBC (r = 0.56**, n = 60). It confirms that MBC rather than organic C is a more sensitive indicator of environmental stresses in soils caused by long-term sodic water irrigation.


2017 ◽  
Author(s):  
Gopinath KA

A conversion period of at least two years is required for annual crops before produce may be certified as organically grown. There is a need for better understanding of the various management options for transitioning from conventional to organic production. The purpose of this study was to evaluate the effects of three organic amendments on growth and yield of bell pepper (Capsicum annuum L.), the benefit:cost ratio, soil fertility and enzymatic activities during conversion to organic production. The organic amendments were composted farmyard manure (FYMC), vermicompost (VC) and poultry manure (PM) along with biofertilizers [Azotobacter + Phosphorus solubilizing Bacteria (Pseudomonas striata)]. The bell pepper yield under organic management was markedly lower (33-53% and 18-40% less in first and second year of conversion, respectively) compared with conventional practice (FYMC 10 Mg ha-1 + NPK – 100:22:41.5 kg ha-1). Composted FYM 20 Mg ha-1 + biofertilizers (BF), and combined application of three organic amendments (FYMC 10 Mg ha-1 + PM and VC each 1.5 Mg ha-1 + BF) produced similar but significantly higher yield (27.9 and 26.1 Mg ha-1, respectively) of bell pepper compared with other organic amendment treatments. Composted FYM 20 Mg ha-1 + BF and combined application of three organic amendments greatly lowered soil bulk density (1.15-1.17 Mg m-3), and enhanced pH (7.1) and oxidizable organic carbon (1.2-1.3%) of soil compared with conventional practice and unamended control after a two-year transition period. However, the N, P and K levels were highest in the plots under conventional practice. Plots amended with FYMC 20 Mg ha-1 + BF had higher soil microbial activities of dehydrogenase, acid phosphatase and β-glucosidase compared with other treatments. However, the urease activity was greater in the plots under conventional practice. Among the treatments involving organic amendments alone, FYMC 20 Mg ha-1 + BF gave the highest gross margin (US $ 8237.5 ha-1) compared to other treatments. We conclude that FYMC 20 Mg ha-1 + BF was found more suitable for enhancing bell pepper growth and yield, through improved soil properties, during conversion to organic production.


Author(s):  
G. I. Ameh ◽  
E. J. Onuh

The effects of Eleusine indica phytoremediation on the soil properties of Copper and Nickel contaminated soil samples were investigated using standard techniques. Soil sample and seeds of E. inidca were collected from a farmland in Obe, Nkanu West L.G.A of Enugu State. 0%, 1%, 2% and 3% potted treatments of Copper and Nickel contaminated soil were made for three samples (initial sample, sample without plant and sample with plant). The plant showed BAF and TF greater than 1. The Soil samples after the plant was harvested were subjected to soil analysis tests (Metal determination, pH, Soil moisture content, total organic carbon, and cation exchange capacity). The results from the study revealed that soil samples with plant showed a lower pH level within the range of 6.50 to 7.80 and higher percentage moisture content for both Cu and Ni contaminated soil samples, of which 1% treatment showed the highest percentage moisture of 0.679% for Cu contamination and 3.16% for Ni contamination. Heavy metal contamination of soil reduces its total organic carbon and increases its cation exchange capacity. Eleusine indica is a hyperaccumulator, its root stores more heavy metals and thus suitable for phytoremediation.


2021 ◽  
Vol 232 (3) ◽  
Author(s):  
Collins Amoah-Antwi ◽  
Jolanta Kwiatkowska-Malina ◽  
Owen Fenton ◽  
Ewa Szara ◽  
Steven F. Thornton ◽  
...  

AbstractOrganic amendments can improve soil quality which has knock-on environmental and agronomic benefits. However, the use of new and emerging organic amendments such as biochar and brown coal waste (BCW) in soil systems requires continuous holistic assessments for robust consensus building in their environmental and agricultural applications. To examine the application of BCW and woodchip biochar (BIO) in agroecosystems, secondary data from literature on environmental (soil, air and water) aspects were compiled with primary agronomic data from a 3-year multicropping field trial and collated with supplementary data on economic factors (e.g. cost and availability). For the field trial, replicated plots were amended with FYM (for comparative reasons), BCW and BIO at 30, 24.2 and 12.8 for t ha–1, respectively, with and without NPK and cultivated in a cropping sequence of maize, potato and barley. At the end of each season, soils were characterised for pH, cation exchange capacity (CEC) and fertility (macronutrient contents) in addition to nutrient uptake, nutritional quality and yield of crops. Compared with FYM, biochar and BCW were found to be associated with greater improvements in soil quality (e.g. building of soil structure and C sequestration) and knock-on water and air quality benefits mainly facilitated via increased cation retention and humic-linked sorption which abated gaseous emission and mitigated nutrient and heavy metal leaching. These along with variable improvements in soil chemistry, fertility and nutrient uptake in the agronomic field trial accounted for increased mean crop yield across treatments (higher with NPK): FYM (32.7 and 71.7%), BCW (33.5 and 60.1%) and BIO (21.8 and 48.2%). Additionally, biochar and BCW have lower pollutant (e.g. heavy metals) contents and were found to provide additional sustainability and net abatement cost-benefits. While the agronomic benefits of biochar and BCW were slightly lower compared with that of FYM, their lower environmental footprints and associated sustainability benefits are clear advantages for their adoption in environmental and agricultural applications.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 126
Author(s):  
Loryssa M. Lake ◽  
Nicholas T. Basta ◽  
David J. Barker

Exposure to soils contaminated with heavy metals can pose human health risk to children through ingestion of contaminated soil. Soil properties such as soil pH, reactive Fe and Al oxide content, clay content, soil organic matter (SOM), and cation exchange capacity (CEC) can reduce contaminant bio-accessibility and exposure. In vitro bio-accessibility (%IVBA) of As and Pb in 19 soils was determined using U.S. EPA Method 1340. Soil properties reduced the bio-accessibility of As by 17–96.5% and 1.3–38.9% for Pb. For both As and Pb, bio-accessibility decreased with increasing Al and Fe oxide content. Al oxides were found to be the primary driver of As and Pb bio-accessibility. Multiple regressions with AlOx, soil pH, %clay and/or FeOx predicted %IVBA As (p < 0.001). The multiple regression including log (FeOx + AlOx) and %clay explained 63% of the variability in %IVBA Pb (p < 0.01). Fe and Al oxides were found to be important drivers of As and Pb bio-accessibility, regardless of in vitro method. These findings suggested soil pH should be used in addition to reactive oxides to predict bio-accessible As. Risk-based adjustments using soil properties for exposure via incidental ingestion should be considered for soils contaminated with As and/or Pb.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1640 ◽  
Author(s):  
Li-Li Zhao ◽  
Lu-Sheng Li ◽  
Huan-Jie Cai ◽  
Xiao-Hu Shi ◽  
Chao Zhang

Organic amendments improve general soil conditions and stabilize crop production, but their effects on the soil hydrothermal regime, root distribution, and their contributions to water productivity (WP) of maize have not been fully studied. A two-year field experiment was conducted to investigate the impacts of organic amendments on soil temperature, water storage depletion (SWSD), root distribution, grain yield, and the WP of summer maize (Zea mays L.) in the Guanzhong Plain of Northwest China. The control treatment (CO) applied mineral fertilizer without amendments, and the three amended treatments applied mineral fertilizer with 20 Mg ha−1 of wheat straw (MWS), farmyard manure (MFM), and bioorganic fertilizer (MBF), respectively. Organic amendments decreased SWSD compared to CO, and the lowest value was obtained in MBF, followed by MWS and MFM. Meanwhile, the lowest mean topsoil (0–10 cm) temperature was registered in MWS. Compared to CO, organic amendments generally improved the root length density (RLD) and root weight density (RWD) of maize. MBF showed the highest RLD across the whole soil profile, while MWS yielded the greatest RWD to 20 cm soil depth. Consequently, organic amendments increased grain yield by 9.9–40.3% and WP by 8.6–47.1% compared to CO, and the best performance was attained in MWS and MBF. We suggest that MWS and MBF can benefit the maize agriculture in semi-arid regions for higher yield, and WP through regulating soil hydrothermal conditions and improving root growth.


2018 ◽  
Vol 42 (4) ◽  
pp. 589-598 ◽  
Author(s):  
HM Naser ◽  
MZ Rahman ◽  
S Sultana ◽  
MA Quddus ◽  
MA Haoque

This study was conducted to determine the effects of organic materials to remediate contaminated soil with heavy metals. A pot study was performed by growing maize (Zea mays) in metal contaminated soil (10 kg pot-1) and soils amendments with cow manure dust, poultry manure dust, vermicompost dust, fern dust, water hyacinth dust, mustard stover dust and barnyard grass dust each at 5 g kg-1 soil. The results showed that Pb, Cd, Ni, Cr and Co uptake by maize depended on the organic materials type. Water hyacinth dust, fern dust, mustard stover dust, and barnyard grass dust addition led to decreased metal content in maize, and this decrease was better expressed with 20.5 to 33.3% for fern dust, 17.3 to 22.0 % for water hyacinth, 18.6 to 21.3% for mustard stover dust, 17.33 to 20.5% for barnyard grass dust. Cow manure dust, poultry manure dust and vermicompost dust led to increased metal content in the maize, and this increase was 6.80 to 18.7 % for cow manure, 18.9 to 86.7 % for poultry manure and 17.4 to 16.0 % for vermicompost. The different effectiveness of organic amendment on metal uptake by maize plant could be due to the nature of organic matter where water hyacinth dust, fern dust, mustard stover dust, and barnyard grass dust were mainly originated from plant. On the other hand, cow manure, poultry manure and vermicompost were mainly the excreta collected from cattle, poultry and earthworms. However, immobilization and phytoextraction techniques might be used to remediate soils which are contaminated with heavy metal.Bangladesh J. Agril. Res. 42(4): 589-598, December 2017


Sign in / Sign up

Export Citation Format

Share Document