Parthenium weed (Parthenium hysterophorus L.) and climate change: the effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes

2017 ◽  
Vol 24 (11) ◽  
pp. 10727-10739 ◽  
Author(s):  
Thi Nguyen ◽  
Ali Ahsan Bajwa ◽  
Sheldon Navie ◽  
Chris O’Donnell ◽  
Steve Adkins
Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
María Carmen Antolín ◽  
María Toledo ◽  
Inmaculada Pascual ◽  
Juan José Irigoyen ◽  
Nieves Goicoechea

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.


Author(s):  
Jerelle A. Jesse ◽  
M. Victoria Agnew ◽  
Kohma Arai ◽  
C. Taylor Armstrong ◽  
Shannon M. Hood ◽  
...  

AbstractDiseases are important drivers of population and ecosystem dynamics. This review synthesizes the effects of infectious diseases on the population dynamics of nine species of marine organisms in the Chesapeake Bay. Diseases generally caused increases in mortality and decreases in growth and reproduction. Effects of diseases on eastern oyster (Crassostrea virginica) appear to be low in the 2000s compared to effects in the 1980s–1990s. However, the effects of disease were not well monitored for most of the diseases in marine organisms of the Chesapeake Bay, and few studies considered effects on growth and reproduction. Climate change and other anthropogenic effects are expected to alter host-pathogen dynamics, with diseases of some species expected to worsen under predicted future conditions (e.g., increased temperature). Additional study of disease prevalence, drivers of disease, and effects on population dynamics could improve fisheries management and forecasting of climate change effects on marine organisms in the Chesapeake Bay.


Author(s):  
Hildegart Ahumada ◽  
Magdalena Cornejo

Soybean yields are often indicated as an interesting case of climate change mitigation due to the beneficial effects of CO2 fertilization. In this paper we econometrically study this effect using a time series model of yields in a multivariate framework for a main producer and exporter of this commodity, Argentina. We have to deal with the upward behavior of soybean yields trying to identify which variables are the long-run determinants responsible of its observed trend. With this aim we adopt a partial system approach to estimate subsets of long-run relationships due to climate, technological and economic factors. Using an automatic selection algorithm we evaluate encompassing of the different obtained equilibrium correction models. We found that only technological innovations due to new crop practices and the use of modified seeds explain soybean yield in the long run. Regarding short run determinants we found positive effects associated with the use of standard fertilizers and also from changes in atmospheric CO2 concentration which would suggest a mitigation effect from global warming. However, we also found negative climate effects from periods of droughts associated with La Niña episodes, high temperatures and extreme rainfall events during the growing season of the plant.


2021 ◽  
Vol 25 (12) ◽  
pp. 6087-6106
Author(s):  
Veronika Forstner ◽  
Jannis Groh ◽  
Matevz Vremec ◽  
Markus Herndl ◽  
Harry Vereecken ◽  
...  

Abstract. Effects of climate change on the ecosystem productivity and water fluxes have been studied in various types of experiments. However, it is still largely unknown whether and how the experimental approach itself affects the results of such studies. We employed two contrasting experimental approaches, using high-precision weighable monolithic lysimeters, over a period of 4 years to identify and compare the responses of water fluxes and aboveground biomass to climate change in permanent grassland. The first, manipulative, approach is based on controlled increases of atmospheric CO2 concentration and surface temperature. The second, observational, approach uses data from a space-for-time substitution along a gradient of climatic conditions. The Budyko framework was used to identify if the soil ecosystem is energy limited or water limited. Elevated temperature reduced the amount of non-rainfall water, particularly during the growing season in both approaches. In energy-limited grassland ecosystems, elevated temperature increased the actual evapotranspiration and decreased aboveground biomass. As a consequence, elevated temperature led to decreasing seepage rates in energy-limited systems. Under water-limited conditions in dry periods, elevated temperature aggravated water stress and, thus, resulted in reduced actual evapotranspiration. The already small seepage rates of the drier soils remained almost unaffected under these conditions compared to soils under wetter conditions. Elevated atmospheric CO2 reduced both actual evapotranspiration and aboveground biomass in the manipulative experiment and, therefore, led to a clear increase and change in seasonality of seepage. As expected, the aboveground biomass productivity and ecosystem efficiency indicators of the water-limited ecosystems were negatively correlated with an increase in aridity, while the trend was unclear for the energy-limited ecosystems. In both experimental approaches, the responses of soil water fluxes and biomass production mainly depend on the ecosystems' status with respect to energy or water limitation. To thoroughly understand the ecosystem response to climate change and be able to identify tipping points, experiments need to embrace sufficiently extreme boundary conditions and explore responses to individual and multiple drivers, such as temperature, CO2 concentration, and precipitation, including non-rainfall water. In this regard, manipulative and observational climate change experiments complement one another and, thus, should be combined in the investigation of climate change effects on grassland.


2019 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
Mokhtar Baraket ◽  
Sondes Fkiri ◽  
Ibtissam Taghouti ◽  
Salma Sai Kachout ◽  
Amel Ennajah ◽  
...  

In north Tunisia, the Quercus suber L. forests have shown a great decline indices as well as a non-natural regeneration. The climate changes could accentuate this unappreciated situation. In this study, the effect of water deficit on physiological behavior of Quercus suber seedlings was investigated. Photosynthetic responses of 15 months old Cork oak seedlings grown for 30 days under 40% and 80% soil water water content (control) were evaluated. Results showed a negative effect of water deficit and a positive effect of the intercellular CO2 concentration increase both on photosynthesis and transpiration. Stomata conductance might play a major role in balancing gas exchanges between the leaf and its environment. Moreover, global warming could negatively affect carbon uptake of Cork oak species in northern Tunisia. Elevated CO2 leaf content will benefit Cork oak growing under water deficit by decreasing both photoysnthesis and transpiration, which will decrease either the rate or the severity of water deficits, with limited effects on metabolism. the results suggest that high intercellular CO2 concentration could increase water use efficiency among Cork oak species.


Hydrobiologia ◽  
2016 ◽  
Vol 772 (1) ◽  
pp. 161-174 ◽  
Author(s):  
Karyna C. Pereira ◽  
Pedro M. Costa ◽  
Maria H. Costa ◽  
Ángel Luque ◽  
T. A. DelValls ◽  
...  

2021 ◽  
Vol 27 (02) ◽  
pp. 2296-2306
Author(s):  
A. S. R. Bajracharya ◽  
◽  
R. B. Thapa ◽  
G. B. KC ◽  
S. B. Pradhan ◽  
...  

Parthenium hysterophorus Linn. is one of the most aggressive, invasive weeds threatening natural and agricultural ecosystems in Nepal. Leaf feeding beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae), is regarded as a potential candidate for biological control of Parthenium weed. Considering the fact effectiveness of Z. bicolorata against P. hysterophorus was evaluted in Nepal. Z. bicolorata caused 98.25 % defoliation of P. hysterophorus reducing 38.88 % plant height, 27.29 % plant width, 26.25 % root length, 12.33 % leaves, 40.58 % shoot biomass and 36.59 % root biomass in the period of 90 days. The flower production and soil seed bank were reduced by 50.22 % and 40.29 %, respectively. Z. bicolorata was an efficient bio-control agent with a significant negative effect on the vegetative and reproductive performance of the noxious weed P. hysterophorus.


Sign in / Sign up

Export Citation Format

Share Document