Mechanical properties of Na-montmorillonite-modified EICP-treated silty sand

Author(s):  
Hua Yuan ◽  
Kang Liu ◽  
Changguang Zhang ◽  
Zhiliang Zhao
2013 ◽  
Vol 800 ◽  
pp. 181-188
Author(s):  
Xiao Yan Yang ◽  
Wen Bai Liu ◽  
Jia Jun Wang ◽  
Wen Hui Shi

Through confined compression test and direct shear test, studied the mechanical properties of the same curing agent of different soil dredged mud, compared the difference of the same curing agent of different soil dredged mud. By confined compression test, the compression modulus of clay, silty sand and silty soil dredged mud after curing increases by 603.7%, 529.0% , 603.7% respectively. By direct shear test, the shear strength of clay dredged mud after curing increases to infinity; silty sands shear strength after curing increases by 209.1% in average; silty soils shear strength increases after curing by 147.5% in average. The compression and shear resistance of this kind of special curing agent for clay is best, silty sand second, but for the silty soil only has a little effect.


1998 ◽  
Vol 35 (6) ◽  
pp. 909-925 ◽  
Author(s):  
Filippo Santucci de Magistris ◽  
Francesco Silvestri ◽  
Filippo Vinale

Compacted granular soils with small additions of bentonite have been used to build geotechnical structures such as impervious liners and cores of zoned earth dams. This paper presents a laboratory study showing how physical and mechanical characteristics of a silty sand are modified by a low percentage of bentonite. The effects of the addition of bentonite on the silty sand are reflected by an increase in the plasticity index, a reduction in maximum modified Proctor density, and a decrease in hydraulic conductivity. The most significant consequences on the mechanical properties are an increase of compressibility and secondary consolidation coefficients, and a reduction in shear strength. Different mixtures were either dynamically compacted at the optimum water content (compacted samples) or prepared after slurry consolidation from the minimum density (remoulded samples). Although the compacted and remoulded specimens show different isotropic compression lines, their critical-state lines in the v:p':q space are identical, where v is specific volume, p' is average effective stress, and q is deviator stress. Comparisons of the mechanical parameters with the existing literature database show that the compression coefficients of the remoulded mixtures are comparable to those of normally consolidated clayey soils of similar plasticity; nevertheless, those of the compacted mixtures are considerably lower. Also, the slopes of their critical-state lines in the q:p' plane are in good agreement with those predicted by empirical correlations for fine-grained soils.Key words: bentonite, silty sand, compaction, physical properties, compressibility, critical state.


2016 ◽  
Vol 210 ◽  
pp. 23-32 ◽  
Author(s):  
Jiankun Liu ◽  
Dan Chang ◽  
Qianmi Yu

2021 ◽  
Vol 1033 ◽  
pp. 183-189
Author(s):  
Alex Llauce ◽  
Gary Duran ◽  
Carlos Fernandez

In this paper, performance of gravelly silty sand soil reinforced with geogrid are present and analyzed to improve the carrying capacity. For this, the geogrid was elaborated with a renewable material like bamboo with the same dimensions of polymer geogrids biaxial. This type of soil can be used for the construction of the sub-base and base of a pavement. California Bearing Ratio (CBR) tests was carried out to obtain the bearing capacity of the silty sand soil with and without bamboo geogrid. In addition, laboratory tests were carried out to obtain the mechanical properties of the bamboo. When comparing CBR results, an improvement in the bearing capacity was evidenced with the use of bamboo geogrid with a 20% increase in the carrying capacity. Finally, maximum tensile and bending strength of bamboo were 2000 kgf/cm2 and approximately 0.018 kgf/cm, respectively.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Sign in / Sign up

Export Citation Format

Share Document