scholarly journals Competency of groundwater recharge of irrigated cotton field subjacent to sowing methods, plastic mulch, water productivity, and yield under climate change

Author(s):  
Muhammad Saeed ◽  
Ahsan Maqbool ◽  
Muhammad Adnan Ashraf ◽  
Muhammad Arshad ◽  
Kashif Mehmood ◽  
...  

Abstract Irrigated agriculture is a foremost consumer of water resources to fulfill the demand for food and fiber with an increasing population under climate changes; cotton is no exception. Depleting groundwater recharge and water productivity is critical for the sustainable cotton crop yield peculiarly in the semiarid region. This study investigated the water productivity and cotton yield under six different treatments: three sowing methods, i.e., flat, ridge, and bed planting with and without plastic mulch. Cotton bed planting without mulch showed maximum water productivity (0.24 kg.m−3) and the highest cotton yield (1946 kg.ha−1). Plastic mulching may reduce water productivity and cotton yield. HYDRUS-1D unsaturated flow model was used to access the groundwater recharge for 150 days under six treatments after model performance evaluation. Maximum cumulative recharge was observed 71 cm for the flat sowing method without plastic mulch. CanESM2 was used to predict climate scenarios for RCP 2.6, 4.5, and 8.5 for the 2050s and 2080s by statistical downscale modeling (SDSM) using historical data from 1975 to 2005 to access future groundwater recharge flux. Average cumulative recharge flux declined 36.53% in 2050 and 22.91% in 2080 compared to 2017 without plastic mulch. Multivariate regression analysis revealed that a maximum 23.78% reduction in groundwater recharge could influence future climate change. Further study may require to understand the remaining influencing factor of depleting groundwater recharge. Findings highlight the significance of climate change and the cotton sowing method while accessing future groundwater resources in irrigated agriculture.

2018 ◽  
Vol 204 ◽  
pp. 69-80 ◽  
Author(s):  
Zachary H. Lauffenburger ◽  
Jason J. Gurdak ◽  
Chris Hobza ◽  
Duane Woodward ◽  
Cassandra Wolf

2021 ◽  
Author(s):  
Alaba Boluwade ◽  
Asma Al-Mamani ◽  
Amna Alruheili ◽  
Ali Al-Maktoumi

<p> </p><p>*Correspondence: [email protected]</p><p><strong>Abstract: </strong>The primary objective of this study was to quantify the impacts of climate change on groundwater recharge using the 3D numerical-based HydroGeoSphere (HGS) model in the Ubar/ Shisr Agricultural region in South of Oman. This region has multi-million US dollar irrigated agriculture project purposely developed for the food security of the country. Excessive abstraction of groundwater for irrigation use (using the center pivot irrigation system) has contributed to the “drying-up” of several groundwater wells located in this area. Therefore, there is an urgent need to characterize the long-term sustainability of this agricultural project under a changing climate. HGS model was calibrated on both steady and transient states using selected monitoring wells located within the study area (approximately 980-km<sup>2</sup>). The coefficient of determination (R<sup>2</sup>) for the steady-state performance was 0.93 while the transient state performances correctly reproduced the seasonality for each monitoring well. A transient-based calibrated version of the HGS model, using 30-year historical observations (1980-2018) was termed “Reference” while model configurations were developed for the immediate climatic projection (period: 2020 – 2039) based on two Representative Concentration Pathways (RCP): - RPC4.5 and RCP8.5 extracted from the World Bank Knowledge portal. These two configured models (scenarios) were evaluated for monthly transient simulations (2020-2039). From the total hydraulic head (THH) fluctuations standpoint, there were reductions when compared with “Reference” for all the scenarios with up to 20% THH reductions for groundwater well levels under persistent seasonal agricultural activities. This study is very important in quantifying the trade-offs and synergies involved between sustainable water management and food security initiatives, especially for an arid climate.</p><p>Keywords: groundwater recharge; climate change, hydrogeologic modeling; Sultanate of Oman</p>


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 286
Author(s):  
Bangshuai Han ◽  
Shawn G. Benner ◽  
Alejandro N. Flores

:In intensively managed watersheds, water scarcity is a product of interactions between complex biophysical processes and human activities. Understanding how intensively managed watersheds respond to climate change requires modeling these coupled processes. One challenge in assessing the response of these watersheds to climate change lies in adequately capturing the trends and variability of future climates. Here we combine a stochastic weather generator together with future projections of climate change to efficiently create a large ensemble of daily weather for three climate scenarios, reflecting recent past and two future climate scenarios. With a previously developed model that captures rainfall-runoff processes and the redistribution of water according to declared water rights, we use these large ensembles to evaluate how future climate change may impact satisfied and unsatisfied irrigation throughout the study area, the Treasure Valley in Southwest Idaho, USA. The numerical experiments quantify the changing rate of allocated and unsatisfied irrigation amount and reveal that the projected temperature increase more significantly influences allocated and unsatisfied irrigation amounts than precipitation changes. The scenarios identify spatially distinct regions in the study area that are at greater risk of the occurrence of unsatisfied irrigation. This study demonstrates how combining stochastic weather generators and future climate projections can support efforts to assess future risks of negative water resource outcomes. It also allows identification of regions in the study area that may be less suitable for irrigated agriculture in future decades, potentially benefiting planners and managers.


2016 ◽  
Vol 164 ◽  
pp. 317-330 ◽  
Author(s):  
Pradip Adhikari ◽  
Srinivasulu Ale ◽  
James P. Bordovsky ◽  
Kelly R. Thorp ◽  
Naga R. Modala ◽  
...  

2014 ◽  
Vol 16 (2) ◽  
pp. 173-185 ◽  
Author(s):  
Ji Min Lee ◽  
Younghun Jung ◽  
Younshik Park ◽  
Hyunwoo Kang ◽  
Kyoung Jae Lim ◽  
...  

Climate ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Emmanuel Dubois ◽  
Marie Larocque ◽  
Sylvain Gagné ◽  
Marco Braun

Long-term changes in precipitation and temperature indirectly impact aquifers through groundwater recharge (GWR). Although estimates of future GWR are needed for water resource management, they are uncertain in cold and humid climates due to the wide range in possible future climatic conditions. This work aims to (1) simulate the impacts of climate change on regional GWR for a cold and humid climate and (2) identify precipitation and temperature changes leading to significant long-term changes in GWR. Spatially distributed GWR is simulated in a case study for the southern Province of Quebec (Canada, 36,000 km2) using a water budget model. Climate scenarios from global climate models indicate warming temperatures and wetter conditions (RCP4.5 and RCP8.5; 1951–2100). The results show that annual precipitation increases of >+150 mm/yr or winter precipitation increases of >+25 mm will lead to significantly higher GWR. GWR is expected to decrease if the precipitation changes are lower than these thresholds. Significant GWR changes are produced only when the temperature change exceeds +2 °C. Temperature changes of >+4.5 °C limit the GWR increase to +30 mm/yr. This work provides useful insights into the regional assessment of future GWR in cold and humid climates, thus helping in planning decisions as climate change unfolds. The results are expected to be comparable to those in other regions with similar climates in post-glacial geological environments and future climate change conditions.


2012 ◽  
Vol 10 ◽  
pp. 66-72
Author(s):  
Rishi R.S. Neupane

Due to greenhouse gas effect temperature around the world will increase (0.06ºC/yr.) resulting in increased evapo-transpiration and increased need of crop irrigation pressurizing ground water resources and its judicious use. An experiment in a deep tubewell area with improved land and irrigation management undertaken in early 1980’s has shown that doubling of agricultural productivity is possible. This system can be taken as mitigative/adaptive measure of climate change.This paper involves experiences of managing tubewell irrigation schemes through improving basically these development parameters in the irrigation command area: Land improvement (land consolidation, rectangular shaping and leveling), Irrigation canal efficiency improvement,Introduction of crop water management, and Evolving Farmers Group into a Co-operative Organization- for managing land collectively. The evaluation has shown that through this intervention approach yields of paddy, wheat, maize and pulse can be doubled in the irrigated areas. This concept might be useful to modify the present policy and program vision of irrigated agriculture development in Nepal through enhancing water productivity a mitigation measure of the effects of climate change. Also, this approach is applicable to surface irrigation schemes of Terai and hills of Nepal.DOI: http://dx.doi.org/10.3126/hn.v10i0.7117 Hydro Nepal Vol.10 January 2012 66-72


Author(s):  
Christopher Hall ◽  
Andrea Hamilton ◽  
William D. Hoff ◽  
Heather A. Viles ◽  
Julie A. Eklund

A coupled sharp-front (SF) liquid transport and evaporation model is used to describe the capillary rise of moisture in monoliths and masonry structures. This provides a basis for the quantitative engineering analysis of moisture dynamics in such structures, with particular application to the conservation of historic buildings and monuments. We show how such a system responds to seasonal variations in the potential evaporation (PE) of the immediate environment, using meteorological data from southern England and Athens, Greece. Results from the SF analytical model are compared with those from finite-element unsaturated-flow simulations. We examine the magnitude and variation of the total flow through a structure as a primary factor in long-term damage caused by leaching, salt crystallization and chemical degradation. We find wide seasonal variation in the height of moisture rise, and this, together with the large estimated water flows, provides a new explanation of the observed position of salt-crystallization damage. The analysis also allows us to estimate the effects of future climate change on the capillary moisture dynamics of monoliths and masonry structures. For example, for southern England, predicted increases in PE for the period 2070–2100 suggest substantial increases in water flux, from which we expect increased damage rates.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1167
Author(s):  
Marieme Seif-Ennasr ◽  
Lhoussaine Bouchaou ◽  
Zine El Abidine El Morjani ◽  
Abdelaziz Hirich ◽  
El Hassane Beraaouz ◽  
...  

Agriculture plays a crucial role in the economic development in Morocco, contributing to 14% of the national gross domestic product. However, this sector is facing various challenges, including climate change. This study aims to assess relevant indicators that may affect land suitability, water demand, and crop growing season duration under climate change. Further, it may be used as a decision support tool in the Chtouka area known for its irrigated agriculture. The approach proposed, the spatial distribution of land based on suitability, is founded on the multiple-criteria decision-making method of four parameters; soil texture, temperature, land use, and slope. The duration of the length of crop season was simulated using the concept of growing degree days. The projection of land suitability for 2031–2050 indicated an important decrease of 12.11% of “highly suitable” agricultural land under the RCP4.5 emission scenario and a significant increase of 4.68% of “highly unsuitable” land, according to the RCP8.5 emission scenario compared to the baseline (1985–2005). The projected growing degree days in 2031–2050 showed a strong shortening in the growing period length compared to the baseline 1985–2006, mainly under the RCP8.5 emission scenario, with a reduction from 8% to 21% depending on crops. Moreover, crop water productivity indicated that berries were over 50% less water productive than other vegetable crops for almost the same amount of applied irrigation water. These findings highlight the vulnerability of agriculture to climate change, which requires important political and management efforts to sustain agricultural activity.


Sign in / Sign up

Export Citation Format

Share Document