The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment

2013 ◽  
Vol 19 (3) ◽  
pp. 601-610 ◽  
Author(s):  
Laura Schneider ◽  
Markus Berger ◽  
Eckhard Schüler-Hainsch ◽  
Sven Knöfel ◽  
Klaus Ruhland ◽  
...  
2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


2021 ◽  
Vol 13 (21) ◽  
pp. 11682
Author(s):  
Martin Nwodo ◽  
Chimay Anumba

The relevance of exergy to the life cycle assessment (LCA) of buildings has been studied regarding its potential to solve certain challenges in LCA, such as the characterization and valuation, accuracy of resource use, and interpretation and comparison of results. However, this potential has not been properly investigated using case studies. This study develops an exergy-based LCA method and applies it to three case-study buildings to explore its benefits. The results provide evidence that the theoretical benefits of exergy-based LCA as against a conventional LCA can be achieved. These include characterization and valuation benefits, accuracy, and enabling the comparison of environmental impacts. With the results of the exergy-based LCA method in standard metrics, there is now a mechanism for the competitive benchmarking of building sustainability assessments. It is concluded that the exergy-based life cycle assessment method has the potential to solve the characterization and valuation problems in the conventional life-cycle assessment of buildings, with local and global significance.


2012 ◽  
Vol 9 (1) ◽  
pp. 34-62 ◽  
Author(s):  
Eckard Rehbinder

Compared to climate protection and the promotion of renewable energy and energy efficiency, the saving of natural resources has been a somewhat neglected field of EU sustainability law. Based on the thesis that from an environmental policy perspective it is not resource scarcity as such but the environmental impacts associated with resource use that must be addressed, the article analyses the existing EU law and possibilities for strengthening resource efficiency and eco-efficiency in EU law. In particular, it discusses possible strategic concepts and instruments, focusing on activity-based strategies such as product life cycle thinking.


Resources ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 32 ◽  
Author(s):  
Iulia Dolganova ◽  
Anne Rödl ◽  
Vanessa Bach ◽  
Martin Kaltschmitt ◽  
Matthias Finkbeiner

Changes in the mobility patterns have evoked concerns about the future availability of certain raw materials necessary to produce alternative drivetrains and related batteries. The goal of this article is to determine if resource use aspects are adequately reflected within life cycle assessment (LCA) case studies of electric vehicles (EV). Overall, 103 LCA studies on electric vehicles from 2009 to 2018 are evaluated regarding their objective, scope, considered impact categories, and assessment methods—with a focus on resource depletion and criticality. The performed analysis shows that only 24 out of 76 EV LCA and 10 out of 27 battery LCA address the issue of resources. The majority of the studies apply one of these methods: CML-IA, ReCiPe, or Eco-Indicator 99. In most studies, EV show higher results for mineral and metal resource depletion than internal combustion engine vehicles (ICEV). The batteries analysis shows that lithium, manganese, copper, and nickel are responsible for the highest burdens. Only few publications approach resource criticality. Although this topic is a serious concern for future mobility, it is currently not comprehensively and consistently considered within LCA studies of electric vehicles. Criticality should be included in the analyses in order to derive results on the potential risks associated with certain resources.


2022 ◽  
Vol 176 ◽  
pp. 105912
Author(s):  
Alexandre Charpentier Poncelet ◽  
Antoine Beylot ◽  
Philippe Loubet ◽  
Bertrand Laratte ◽  
Stéphanie Muller ◽  
...  

2021 ◽  
Vol 1200 (1) ◽  
pp. 012012
Author(s):  
H Adnan ◽  
A T Balasbaneh

Abstract Life cycle assessment (LCA) is conducted in order to evaluate the environmental impacts of products chosen from the manufacturing phase and the end-of life cycle of the material and in clay brick and concrete were chose as the observed products. Brick is one of the important construction materials that can be seen at the surrounding. Main objective for this study is to investigate the impact of production of different types of brick to the level of emissions of carbon dioxide to the environment. Four stages of life cycle assessment were conducted before the result for the study analysis can be obtained and that stages including goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA) and the interpretation part. The results obtained from the simulation of the Simapro shown that the concrete contributes more negative impact compared production of clay brick in terms of global warming, ozone depletion, formation of fine particulate matter and ozone formation. Manufacture of clay brick contributes more negative impact to the ionizing radiation, freshwater eutrophication and mineral resource scarcity.


Sign in / Sign up

Export Citation Format

Share Document