scholarly journals Phytostabilisation on post-flotation sediment waste: mobility of heavy metals and stimulation of biochemical processes by mineral-organic mixtures

2020 ◽  
Vol 20 (9) ◽  
pp. 3502-3513
Author(s):  
Krzysztof Gondek ◽  
Monika Mierzwa-Hersztek ◽  
Michał Kopeć ◽  
Tomasz Bajda
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Abolghassem Emamverdian ◽  
Yulong Ding ◽  
Yinfeng Xie ◽  
Sirous Sangari

The increased contaminants caused by anthropogenic activities in the environment and the importance of finding pathways to reduce pollution caused the silicon application to be considered an important detoxification agent. Silicon, as a beneficial element, plays an important role in amelioration of abiotic stress, such as an extreme dose of heavy metal in plants. There are several mechanisms involved in silicon mediation in plants, including the reduction of heavy metal uptake by plants, changing pH value, formation of Si heavy metals, and stimulation of enzyme activity, which can work by chemical and physical pathways. The aim of this paper is to investigate the major silicon-related mechanisms that reduce the toxicity of heavy metals in plants and then to assess the role of silicon in increasing the antioxidant enzyme and nonenzyme activities to protect the plant cell.


1980 ◽  
Vol 58 (10) ◽  
pp. 1184-1188 ◽  
Author(s):  
I. Bihler ◽  
L. E. Hoeschen ◽  
P. C. Sawh

The effect of heavy metals on sugar transport in fully resting guinea pig left atria was studied by measuring the tissue–medium distribution of 3-methylglucose. Basal sugar transport was increased significantly by all heavy metals tested (Co2+, Ni2+, Zn2+, Mn2+ (2 mM)) and by La3+ (0.05 mM) but 1 mM La3+ had no effect. The stimulation of sugar transport by insulin, hyperosmolarity, K+-free medium, or 10−5 M ouabain was strongly antagonized by Ni2+, Zn2+, and La3+ but was unaffected by Co2+ and Mn2+. The heavy metals did not affect intracellular Na2+ and K+, whether in the basal state or when the Na+ pump was depressed by ouabain or K+-free medium. The data suggest that Ca2+ antagonistic ions may affect sugar transport both by inhibiting Ca2+ influx and by competing with Ca2+ for specific binding sites presumably involved in the regulation of sugar transport.


2011 ◽  
Vol 21 (4) ◽  
pp. 344-349
Author(s):  
David J. Powner ◽  
Hanh Truong

Takotsubo cardiomyopathy, the syndrome caused by an extreme release and circulation of catecholamines, shares several histopathological and clinical similarities with cardiac changes after brain death noted in animal investigations and human observation. Overwhelming stimulation of myocardial inotropic β receptors may alter their responsiveness and induce other biochemical processes, producing reduced cardiac contractility. Treatment methods in Takotsubo cardiomyopathy that use extracorporeal circulatory support and medications that do not rely on β-receptor stimulation and preemptive blockade of β receptors or calcium channels before brain death may be relevant to donor care.


1988 ◽  
Author(s):  
Robert F. Labbe ◽  
Rebecca L. Rettmer ◽  
Holly Davis

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5359
Author(s):  
Mohamed Moustafa-Farag ◽  
Amr Elkelish ◽  
Mohamed Dafea ◽  
Mumtaz Khan ◽  
Marino B. Arnao ◽  
...  

Melatonin (MT) is a pleiotropic molecule with diverse and numerous actions both in plants and animals. In plants, MT acts as an excellent promotor of tolerance against abiotic stress situations such as drought, cold, heat, salinity, and chemical pollutants. In all these situations, MT has a stimulating effect on plants, fomenting many changes in biochemical processes and stress-related gene expression. Melatonin plays vital roles as an antioxidant and can work as a free radical scavenger to protect plants from oxidative stress by stabilization cell redox status; however, MT can alleviate the toxic oxygen and nitrogen species. Beyond this, MT stimulates the antioxidant enzymes and augments antioxidants, as well as activates the ascorbate–glutathione (AsA–GSH) cycle to scavenge excess reactive oxygen species (ROS). In this review, we examine the recent data on the capacity of MT to alleviate the effects of common abiotic soil stressors, such as salinity, alkalinity, acidity, and the presence of heavy metals, reinforcing the general metabolism of plants and counteracting harmful agents. An exhaustive analysis of the latest advances in this regard is presented, and possible future applications of MT are discussed.


REPORTS ◽  
2021 ◽  
Vol 2 (336) ◽  
pp. 39-45
Author(s):  
A. M. Digarbaeva ◽  
A. N. Kaliyeva ◽  
E. A. Kirshibayev ◽  
M. R. Bahtybaeva

Heavy metals are some of the most harmful chemicals in the environment today. Today, many scientists believe that the main factor that negatively affects the plant in saline conditions is the osmotic effect of salts. In conditions of soil salinity, the lack of plants causes dehydration of proteins, which negatively affects the physiological and biochemical processes of plants. Plants absorb heavy metals in different ways. It absorbs heavy metals from the soil through the roots and from the air through the stomata of the leaves, mainly through dust. The aim of the research is to study the influence of heavy metals on the physiological and biochemical processes of growth and development of maize varieties. The article presents the research results of the heavy metals influence on the elongation of seedlings and the synthesis of photosynthetic pigments during the germination of maize varieties. It is obvious that heavy metals affect the growth and plant development from the initial germination stage of corn kernels. The results of monitoring various effects of heavy metals on photosynthetic pigments are also presented. In addition, the length of the above- water and underground parts of the biomass, the ratio of dry weight to actual weight is the heavy metals effect on plants. For example, the leaves turned dark green, the stems twisted, did not fully open and turned pink. Under the influence of heavy metals, plant development, metabolism and photosynthesis are disrupted, as well as the normal course of respiration and photosynthesis. According to the results obtained, the impact of heavy metals on maize varieties significantly inhibits the accumulation and growth of biomass. In particular, the processes of plant root growth are suppressed. Differences in the tolerance of different varieties of heavy metals can be explained by their varietal characteristics and genetic basis. Currently, there is a theoretical and practical interest in the identification of ion-resistant forms of heavy metals, their ability to detect and reveal their nature, the development of ways to increase the impact and resistance of heavy metals on plants. Formulating the results of the study, it was found that different heavy metals concentrations (CuSO4 and CdSO4) negatively affect the growth of corn varieties. This can be seen from the tables below (tables 1, 2, 3, 4).


2019 ◽  
Vol 1 (11(41)) ◽  
pp. 7-9
Author(s):  
N. A. Kavtaradze ◽  
K. N. Kochiashvili ◽  
M. A. Stephanishvili ◽  
T. A. Dgebuadze ◽  
M. Z. Japaridze

Methods of neutralisation of different types of soils contaminated with heavy metals are studied. Certain strains of microorganisms have been selected, local microflora has been studied and identified at the genus level in laboratory conditions. Considering the conducted works, development of modified forms of humic acids, stimulation of local microorganisms and creation of geochemical barriers using local natural raw materials is recomended. Obtained results makes possible to develop comprehensive and rational model by means of inovative technologies for effective purification of soils contaminated with heavy metals.


2018 ◽  
Vol 5 (1) ◽  
pp. 14-18 ◽  
Author(s):  
Darinka Gjorgieva Ackova

Heavy metals are important environmental pollutants, and their toxicity is a serious problem of great concern for environmental, ecological, nutritional and toxicological reasons. Metals can affected long list of physiological and biochemical processes in plants and their toxicity varies with plant species, particular metal, metal concentration and it chemical form. Throughout the world, researches have been conducted extensive investigations to determine the effects of toxic heavy metals on plants. The process is still going on and the need of intensification of the research programmes for better understanding of heavy metal toxicity is evident.


2019 ◽  
Vol 97 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Natalia Pavón ◽  
Mabel Buelna-Chontal ◽  
Arturo Macías-López ◽  
Francisco Correa ◽  
Cristina Uribe-Álvarez ◽  
...  

In the kidney, the accumulation of heavy metals such as Cd2+ produces mitochondrial dysfunctions, i.e., uncoupling of the oxidative phosphorylation, inhibition of the electron transport through the respiratory chain, and collapse of the transmembrane electrical gradient. This derangement may be due to the fact that Cd2+ induces the transition of membrane permeability from selective to nonselective via the opening of a transmembrane pore. In fact, Cd2+ produces this injury through the stimulation of oxygen-derived radical generation, inducing oxidative stress. Several molecules have been used to avoid or even reverse Cd2+-induced mitochondrial injury, for instance, cyclosporin A, resveratrol, dithiocarbamates, and even EDTA. The aim of this study was to explore the possibility that the antioxidant tamoxifen could protect mitochondria from the deleterious effects of Cd2+. Our results indicate that the addition of 1 μmol/L Cd2+ to mitochondria collapsed the transmembrane electrical gradient, induced the release of cytochrome c, and increased both the generation of H2O2 and the oxidative damage to mitochondrial DNA (among other measured parameters). Of interest, these mitochondrial dysfunctions were ameliorated after the addition of tamoxifen.


1973 ◽  
Vol 134 (1) ◽  
pp. 129-142 ◽  
Author(s):  
F. R. Mangan ◽  
A. E. Pegg ◽  
W. I. P. Mainwaring

1. A comparison was made of the binding of 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one) and cyclic AMP in the rat prostate gland. Distinct binding mechanisms exist for these compounds, and cyclic AMP cannot serve as a competitor for the 5α-dihydrotestosterone-binding sites and vice versa. In contrast with the results obtained with 5α-dihydrotestosterone, very small amounts of cyclic AMP are retained in nuclear chromatin and the overall binding of this cyclic nucleotide is not markedly affected by castration. 2. Androgenic stimulation does not lead to major increases in the adenylate cyclase activities associated with any subcellular fraction of the prostate gland. Accordingly, changes in the concentration of cyclic AMP in the prostate gland after hormonal treatment are likely to be small, but these were not measured directly. 3. When administered to whole animals in vivo, small amounts of non-degraded cyclic AMP are found in the prostate gland but sufficient to promote an activation of certain carbohydrate-metabolizing enzymes in the cell supernatant fraction. The stimulatory effects of cyclic AMP were not evident with cytoplasmic enzymes engaged in polyamine synthesis or nuclear RNA polymerases. These latter enzymes were stimulated solely by the administration of testosterone. 4. By making use of antiandrogens, a distinction can be drawn between the biochemical responses attributable to the binding of 5α-dihydrotestosterone but not of cyclic AMP. Evidence is presented to suggest that the stimulation of RNA polymerase, ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase is a consequence of the selective binding of 5α-dihydrotestosterone. Only the stimulation of glucose 6-phosphate dehydrogenase can be attributed to cyclic AMP or other metabolites of testosterone. 5. Overall, this study indicates that the formation of cyclic AMP is not a major feature of the androgenic response and affects only a restricted number of biochemical processes. Certainly, cyclic AMP cannot be considered as interchangeable with testosterone and its metabolites in the control of the function of the prostate gland. This difference is additionally emphasized by the failure of cyclic AMP to restore the morphology of the prostate gland in castrated animals; morphological restoration only follows the administration of androgens.


Sign in / Sign up

Export Citation Format

Share Document