Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis

2007 ◽  
Vol 50 (5) ◽  
pp. 676-689 ◽  
Author(s):  
JinHui Fan ◽  
WenQing Li ◽  
XiuChun Dong ◽  
Wei Guo ◽  
HuaiRui Shu
2019 ◽  
Vol 71 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Yong Zhou ◽  
Lifang Hu ◽  
Lingli Ge ◽  
Guanghua Li ◽  
Peng He ◽  
...  

The floral homeotic C-function MADS gene AGAMOUS (AG) in Arabidopsis plays crucial roles in specifying stamen and carpel identities as well as determining floral meristem. However, there have been only a few studies of floral homeotic C-function genes in cucumber thus far. In the present study, CsMADS24, a putative AG ortholog from cucumber, was isolated and characterized. Sequence analysis and protein sequence alignment revealed that the deduced CsMADS24 protein contained the typical MIKC structure and the N-terminal extension, as well as two highly conserved AG motifs (I and II). Phylogenetic analysis showed that CsMADS24 fell into the clade of core eudicots, while being distant from the AG orthologs of basal eudicots, monocots and gymnosperms. Expression analysis by RT-PCR showed that CsMADS24 was exclusively expressed in female flower buds. In situ hybridization revealed that CsMADS24 expression was only detected in the carpels. Functional analyses indicated that the sepals were partly converted into carpelloid-like structures in 35S::35S::CsMADS24 transgenic plants. In addition, earlier flowering and delayed floral organ abscission during the development of siliques were also observed in transgenic Arabidopsis. Our findings demonstrate that the AG ortholog plays an exclusive role in carpel specification of cucumber, providing a basis for revealing the mechanisms of reproductive development in cucumber.


2019 ◽  
Vol 24 (39) ◽  
pp. 4639-4645 ◽  
Author(s):  
Seyed Mostafa Parizadeh ◽  
Reza Jafarzadeh-Esfehani ◽  
Amir Avan ◽  
Maryam Ghandehari ◽  
Fatemeh Goldani ◽  
...  

Gastric cancer (GC) has a high mortality rate with a poor 5-year survival. Helicobacter pylori (H. pylori) is present as part of the normal flora of stomach. It is found in the gastric mucosa of more than half of the world population. This bacterium is involved in developing H. pylori-induced GC due to the regulation of different micro ribonucleic acid (miRNA or miR). miRNAs are small noncoding RNAs and are recognized as prognostic biomarkers for GC that may control gene expression. miRNAs may function as tumor suppressors, or oncogenes. In this review, we evaluated studies that investigated the ectopic expression of miRNAs in the prognosis of H. pylori positive and negative GC.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
You Shuai ◽  
Zhonghua Ma ◽  
Weitao Liu ◽  
Tao Yu ◽  
Changsheng Yan ◽  
...  

Abstract Background Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. Methods LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. Results It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. Conclusions Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Yiyun Sun ◽  
Dandan Xu ◽  
Chundong Zhang ◽  
Yitao Wang ◽  
Lian Zhang ◽  
...  

We previously demonstrated that proline-rich protein 11 (PRR11) and spindle and kinetochore associated 2 (SKA2) constituted a head-to-head gene pair driven by a prototypical bidirectional promoter. This gene pair synergistically promoted the development of non-small cell lung cancer. However, the signaling pathways leading to the ectopic expression of this gene pair remains obscure. In the present study, we first analyzed the lung squamous cell carcinoma (LSCC) relevant RNA sequencing data from The Cancer Genome Atlas (TCGA) database using the correlation analysis of gene expression and gene set enrichment analysis (GSEA), which revealed that the PRR11-SKA2 correlated gene list highly resembled the Hedgehog (Hh) pathway activation-related gene set. Subsequently, GLI1/2 inhibitor GANT-61 or GLI1/2-siRNA inhibited the Hh pathway of LSCC cells, concomitantly decreasing the expression levels of PRR11 and SKA2. Furthermore, the mRNA expression profile of LSCC cells treated with GANT-61 was detected using RNA sequencing, displaying 397 differentially expressed genes (203 upregulated genes and 194 downregulated genes). Out of them, one gene set, including BIRC5, NCAPG, CCNB2, and BUB1, was involved in cell division and interacted with both PRR11 and SKA2. These genes were verified as the downregulated genes via RT-PCR and their high expression significantly correlated with the shorter overall survival of LSCC patients. Taken together, our results indicate that GLI1/2 mediates the expression of the PRR11-SKA2-centric gene set that serves as an unfavorable prognostic indicator for LSCC patients, potentializing new combinatorial diagnostic and therapeutic strategies in LSCC.


Sign in / Sign up

Export Citation Format

Share Document