High-Performance Label-Free Near-Infrared SPR Sensor for Wide Range of Gases and Biomolecules Based on Graphene-Gold Grating

Plasmonics ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. 1179-1188 ◽  
Author(s):  
Zeynab Sadeghi ◽  
Hossein Shirkani
2012 ◽  
Vol 523-524 ◽  
pp. 680-685
Author(s):  
Shuhei Uchida ◽  
Kazuya Yamamura ◽  
Nobuyuki Zettsu

Localized surface plasmon resonance (LSPR) based sensors are a well established technology utilized for label-free biochemical sensing in immunoassay, medical diagnostics and environmental monitoring. The understanding of asymmetric metal nanoparticles, new object for complex, coupled plasmon systems providing localized significantly enhanced E-field, is central to a wide range of novel applications and processes in science of higher sensitive sensing systems. However, few methods are available for actual characterization of such nanostructures at the single particle level. Here we propose a precise and large sized scale fabrication technique for asymmetric nanoshells array with nanogaps of several tens of nanometers for LSPR sensor through atmospheric pressure plasma etching processes. A nanoshell was simply constructed by laminating thin Au films on periodic isolated polymer nanoparticles template. This nanoshells array was expected to exhibit specific near-infrared plasmonic properties. When measuring the sensitivity, nanoshells array exhibited a high sensitivity to changes of surrounding refractive index and showed a higher sensor figure of merit than the alternative structures. This indicated that the enhanced plasmon E-field in the asymmetric nanostructures improved sensor performance. Our fabrication technique and the optical properties of the arrays will provide useful information for developing new plasmonic applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 334 ◽  
Author(s):  
Wenli Cui ◽  
Wei Peng ◽  
Li Yu ◽  
Xiaolin Luo ◽  
Huixuan Gao ◽  
...  

The miniaturization and integration of photonic devices are new requirements in the novel optics field due to the development of photonic information technology. In this paper, we report that a multifunctional layered structure of Au, SiO2 and hexagonal nanodisk film is advantageous for ultra-narrowband filtering, near-perfect absorption and sensing in a wide refractive index (RI) region. This hexagonal nanostructure presented two remarkable polarization independent plasmon resonances with near-zero reflectivity and near-perfect absorptivity under normal incidence in the visible and near-infrared spectral ranges. The narrowest full width at half maximum (FWHM) of these resonances was predicted to be excellent at 5 nm. More notably, the double plasmon resonances showed extremely obvious differences in RI responses. For the first plasmon resonance, an evident linear redshift was observed in a wide RI range from 1.00 to 1.40, and a high RI sensitivity of 600 nm/RIU was obtained compared to other plasmonic nanostructures, such as square and honeycomb-like nanostructures. For the second plasmon resonance with excellent FWHM at 946 nm, its wavelength position almost remained unmovable in the case of changing RI surrounding nanodisks in the same regime. Most unusually, its resonant wavelength was insensitive to nearly all structural parameters except the structural period. The underlying physical mechanism was analyzed in detail for double plasmon resonances. This work was significant in developing high-performance integrated optical devices for filtering, absorbing and biomedical sensing.


Nanophotonics ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1941-1951
Author(s):  
Jiaqi Zhu ◽  
Yuxuan Ke ◽  
Jianfeng Dai ◽  
Qi You ◽  
Leiming Wu ◽  
...  

AbstractSurface plasmon resonance (SPR) sensors have been applied in a wide range of applications for real-time and label-free detection. In this article, by covering the topological insulators nanosheets on the surface of the noble metal (Au), the sensitivity of the SPR sensor is greatly enhanced because of the strong interaction of light with Au–bismuth selenide (Bi2Se3) heterostructure. It is shown that the sensitivity of proposed SPR sensors depends on the concentration of Bi2Se3 solution or the thickness of the coated Bi2Se3 film. The optimised sensitivity (2929.1 nm/RIU) and figure of merit (33.45 RIU−1) have been obtained after three times drop-casting, and the enhancement sensitivity of proposed sensors is up to 51.97% compared to the traditional Au–SPR sensors. Meanwhile, the reflection spectrum is simulated by using the method of effective refractive index, and the reason for the increase of sensitivity is analysed theoretically. For researching the application of modified SPR sensor, heavy metal detection is employed to detect in the last part. Our proposed SPR sensors have potential applications in heavy metal detections and biosensing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yizhi Liang ◽  
Huojiao Sun ◽  
Linghao Cheng ◽  
Long Jin ◽  
Bai-Ou Guan

AbstractOptoacoustic vibrations in optical fibres have enabled spatially resolved sensing, but the weak electrostrictive force hinders their application. Here, we introduce photothermally induced acoustic vibrations (PTAVs) to realize high-performance fibre-based optoacoustic sensing. Strong acoustic vibrations with a wide range of axial wavenumbers kz are photothermally actuated by using a focused pulsed laser. The local transverse resonant frequency and loss coefficient can be optically measured by an intra-core acoustic sensor via spectral analysis. Spatially resolved sensing is further achieved by mechanically scanning the laser spot. The experimental results show that the PTAVs can be used to resolve the acoustic impedance of the surrounding fluid at a spatial resolution of approximately 10 μm and a frame rate of 50 Hz. As a result, PTAV-based optoacoustic sensing can provide label-free visualization of the diffusion dynamics in microfluidics at a higher spatiotemporal resolution.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirui Ji ◽  
Shuming Yang ◽  
Yu Wang ◽  
Kaili Li ◽  
Yiming Wang ◽  
...  

AbstractGraphene/silicon Schottky junctions have been proven efficient for photodetection, but the existing high dark current seriously restricts applications such as weak signal detection. In this paper, a thin layer of gadolinium iron garnet (Gd3Fe5O12, GdIG) film is introduced to engineer the interface of a graphene/silicon Schottky photodetector. The novel structure shows a significant decrease in dark current by 54 times at a −2 V bias. It also exhibits high performance in a self-powered mode in terms of an Ilight/Idark ratio up to 8.2 × 106 and a specific detectivity of 1.35 × 1013 Jones at 633 nm, showing appealing potential for weak-light detection. Practical suitability characterizations reveal a broadband absorption covering ultraviolet to near-infrared light and a large linear response with a wide range of light intensities. The device holds an operation speed of 0.15 ms, a stable response for 500 continuous working cycles, and long-term environmental stability after several months. Theoretical analysis shows that the interlayer increases the barrier height and passivates the contact surface so that the dark current is suppressed. This work demonstrates the good capacity of GdIG thin films as interlayer materials and provides a new solution for high-performance photodetectors.


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 72 ◽  
Author(s):  
Da-Quan Yang ◽  
Bing Duan ◽  
Xiao Liu ◽  
Ai-Qiang Wang ◽  
Xiao-Gang Li ◽  
...  

The ability to detect nanoscale objects is particular crucial for a wide range of applications, such as environmental protection, early-stage disease diagnosis and drug discovery. Photonic crystal nanobeam cavity (PCNC) sensors have attracted great attention due to high-quality factors and small-mode volumes (Q/V) and good on-chip integrability with optical waveguides/circuits. In this review, we focus on nanoscale optical sensing based on PCNC sensors, including ultrahigh figure of merit (FOM) sensing, single nanoparticle trapping, label-free molecule detection and an integrated sensor array for multiplexed sensing. We believe that the PCNC sensors featuring ultracompact footprint, high monolithic integration capability, fast response and ultrahigh sensitivity sensing ability, etc., will provide a promising platform for further developing lab-on-a-chip devices for biosensing and other functionalities.


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


Sign in / Sign up

Export Citation Format

Share Document