scholarly journals Acoustic signal analysis of instrument–tissue interaction for minimally invasive interventions

Author(s):  
Daniel Ostler ◽  
Matthias Seibold ◽  
Jonas Fuchtmann ◽  
Nicole Samm ◽  
Hubertus Feussner ◽  
...  

Abstract Purpose Minimally invasive surgery (MIS) has become the standard for many surgical procedures as it minimizes trauma, reduces infection rates and shortens hospitalization. However, the manipulation of objects in the surgical workspace can be difficult due to the unintuitive handling of instruments and limited range of motion. Apart from the advantages of robot-assisted systems such as augmented view or improved dexterity, both robotic and MIS techniques introduce drawbacks such as limited haptic perception and their major reliance on visual perception. Methods In order to address the above-mentioned limitations, a perception study was conducted to investigate whether the transmission of intra-abdominal acoustic signals can potentially improve the perception during MIS. To investigate whether these acoustic signals can be used as a basis for further automated analysis, a large audio data set capturing the application of electrosurgery on different types of porcine tissue was acquired. A sliding window technique was applied to compute log-mel-spectrograms, which were fed to a pre-trained convolutional neural network for feature extraction. A fully connected layer was trained on the intermediate feature representation to classify instrument–tissue interaction. Results The perception study revealed that acoustic feedback has potential to improve the perception during MIS and to serve as a basis for further automated analysis. The proposed classification pipeline yielded excellent performance for four types of instrument–tissue interaction (muscle, fascia, liver and fatty tissue) and achieved top-1 accuracies of up to 89.9%. Moreover, our model is able to distinguish electrosurgical operation modes with an overall classification accuracy of 86.40%. Conclusion Our proof-of-principle indicates great application potential for guidance systems in MIS, such as controlled tissue resection. Supported by a pilot perception study with surgeons, we believe that utilizing audio signals as an additional information channel has great potential to improve the surgical performance and to partly compensate the loss of haptic feedback.

2019 ◽  
Vol 14 (5) ◽  
pp. 406-421 ◽  
Author(s):  
Ting-He Zhang ◽  
Shao-Wu Zhang

Background: Revealing the subcellular location of a newly discovered protein can bring insight into their function and guide research at the cellular level. The experimental methods currently used to identify the protein subcellular locations are both time-consuming and expensive. Thus, it is highly desired to develop computational methods for efficiently and effectively identifying the protein subcellular locations. Especially, the rapidly increasing number of protein sequences entering the genome databases has called for the development of automated analysis methods. Methods: In this review, we will describe the recent advances in predicting the protein subcellular locations with machine learning from the following aspects: i) Protein subcellular location benchmark dataset construction, ii) Protein feature representation and feature descriptors, iii) Common machine learning algorithms, iv) Cross-validation test methods and assessment metrics, v) Web servers. Result & Conclusion: Concomitant with a large number of protein sequences generated by highthroughput technologies, four future directions for predicting protein subcellular locations with machine learning should be paid attention. One direction is the selection of novel and effective features (e.g., statistics, physical-chemical, evolutional) from the sequences and structures of proteins. Another is the feature fusion strategy. The third is the design of a powerful predictor and the fourth one is the protein multiple location sites prediction.


2018 ◽  
Author(s):  
Anika Oellrich ◽  
George Gkotsis ◽  
Richard James Butler Dobson ◽  
Tim JP Hubbard ◽  
Rina Dutta

BACKGROUND Dementia is a growing public health concern with approximately 50 million people affected worldwide in 2017 and this number is expected to reach more than 131 million by 2050. The toll on caregivers and relatives cannot be underestimated as dementia changes family relationships, leaves people socially isolated, and affects the finances of all those involved. OBJECTIVE The aim of this study was to explore using automated analysis (i) the age and gender of people who post to the social media forum Reddit about dementia diagnoses, (ii) the affected person and their diagnosis, (iii) relevant subreddits authors are posting to, (iv) the types of messages posted and (v) the content of these posts. METHODS We analysed Reddit posts concerning dementia diagnoses. We used a previously developed text analysis pipeline to determine attributes of the posts as well as their authors to characterise online communications about dementia diagnoses. The posts were also examined by manual curation for the diagnosis provided and the person affected. Furthermore, we investigated the communities these people engage in and assessed the contents of the posts with an automated topic gathering technique. RESULTS Our results indicate that the majority of posters in our data set are women, and it is mostly close relatives such as parents and grandparents that are mentioned. Both the communities frequented and topics gathered reflect not only the sufferer's diagnosis but also potential outcomes, e.g. hardships experienced by the caregiver. The trends observed from this dataset are consistent with findings based on qualitative review, validating the robustness of social media automated text processing. CONCLUSIONS This work demonstrates the value of social media data sources as a resource for in-depth studies of those affected by a dementia diagnosis and the potential to develop novel support systems based on their real time processing in line with the increasing digitalisation of medical care.


Author(s):  
E. Willuth ◽  
S. F. Hardon ◽  
F. Lang ◽  
C. M. Haney ◽  
E. A. Felinska ◽  
...  

Abstract Background Robotic-assisted surgery (RAS) potentially reduces workload and shortens the surgical learning curve compared to conventional laparoscopy (CL). The present study aimed to compare robotic-assisted cholecystectomy (RAC) to laparoscopic cholecystectomy (LC) in the initial learning phase for novices. Methods In a randomized crossover study, medical students (n = 40) in their clinical years performed both LC and RAC on a cadaveric porcine model. After standardized instructions and basic skill training, group 1 started with RAC and then performed LC, while group 2 started with LC and then performed RAC. The primary endpoint was surgical performance measured with Objective Structured Assessment of Technical Skills (OSATS) score, secondary endpoints included operating time, complications (liver damage, gallbladder perforations, vessel damage), force applied to tissue, and subjective workload assessment. Results Surgical performance was better for RAC than for LC for total OSATS (RAC = 77.4 ± 7.9 vs. LC = 73.8 ± 9.4; p = 0.025, global OSATS (RAC = 27.2 ± 1.0 vs. LC = 26.5 ± 1.6; p = 0.012, and task specific OSATS score (RAC = 50.5 ± 7.5 vs. LC = 47.1 ± 8.5; p = 0.037). There were less complications with RAC than with LC (10 (25.6%) vs. 26 (65.0%), p = 0.006) but no difference in operating times (RAC = 77.0 ± 15.3 vs. LC = 75.5 ± 15.3 min; p = 0.517). Force applied to tissue was similar. Students found RAC less physical demanding and less frustrating than LC. Conclusions Novices performed their first cholecystectomies with better performance and less complications with RAS than with CL, while operating time showed no differences. Students perceived less subjective workload for RAS than for CL. Unlike our expectations, the lack of haptic feedback on the robotic system did not lead to higher force application during RAC than LC and did not increase tissue damage. These results show potential advantages for RAS over CL for surgical novices while performing their first RAC and LC using an ex vivo cadaveric porcine model. Registration number researchregistry6029 Graphic abstract


2011 ◽  
Vol 69 (suppl_1) ◽  
pp. ons14-ons19 ◽  
Author(s):  
Cristian J Luciano ◽  
P Pat Banerjee ◽  
Brad Bellotte ◽  
G Michael Oh ◽  
Michael Lemole ◽  
...  

Abstract BACKGROUND: We evaluated the use of a part-task simulator with 3D and haptic feedback as a training tool for a common neurosurgical procedure - placement of thoracic pedicle screws. OBJECTIVE: To evaluate the learning retention of thoracic pedicle screw placement on a high-performance augmented reality and haptic technology workstation. METHODS: Fifty-one fellows and residents performed thoracic pedicle screw placement on the simulator. The virtual screws were drilled into a virtual patient's thoracic spine derived from a computed tomography data set of a real patient. RESULTS: With a 12.5% failure rate, a 2-proportion z test yielded P = .08. For performance accuracy, an aggregate Euclidean distance deviation from entry landmark on the pedicle and a similar deviation from the target landmark in the vertebral body yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the practice to the test sessions, and the alternative hypothesis assumes an improvement. CONCLUSION: The performance accuracy on the simulator was comparable to the accuracy reported in literature on recent retrospective evaluation of such placements. The failure rates indicated a minor drop from practice to test sessions, and also indicated a trend (P = .08) toward learning retention resulting in improvement from practice to test sessions. The performance accuracy showed a 15% mean score improvement and more than a 50% reduction in standard deviation from practice to test. It showed evidence (P = .04) of performance accuracy improvement from practice to test session.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
A. Aziz Altowayan ◽  
Lixin Tao

We consider the following problem: given neural language models (embeddings) each of which is trained on an unknown data set, how can we determine which model would provide a better result when used for feature representation in a downstream task such as text classification or entity recognition? In this paper, we assess the word similarity measure through analyzing its impact on word embeddings learned from various datasets and how they perform in a simple classification task. Word representations were learned and assessed under the same conditions. For training word vectors, we used the implementation of Continuous Bag of Words described in [1]. To assess the quality of the vectors, we applied the analogy questions test for word similarity described in the same paper. Further, to measure the retrieval rate of an embedding model, we introduced a new metric (Average Retrieval Error) which measures the percentage of missing words in the model. We observe that scoring a high accuracy of syntactic and semantic similarities between word pairs is not an indicator of better classification results. This observation can be justified by the fact that a domain-specific corpus contributes to the performance better than a general-purpose corpus. For reproducibility, we release our experiments scripts and results.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141770907 ◽  
Author(s):  
Hanbo Wu ◽  
Xin Ma ◽  
Zhimeng Zhang ◽  
Haibo Wang ◽  
Yibin Li

Human daily activity recognition has been a hot spot in the field of computer vision for many decades. Despite best efforts, activity recognition in naturally uncontrolled settings remains a challenging problem. Recently, by being able to perceive depth and visual cues simultaneously, RGB-D cameras greatly boost the performance of activity recognition. However, due to some practical difficulties, the publicly available RGB-D data sets are not sufficiently large for benchmarking when considering the diversity of their activities, subjects, and background. This severely affects the applicability of complicated learning-based recognition approaches. To address the issue, this article provides a large-scale RGB-D activity data set by merging five public RGB-D data sets that differ from each other on many aspects such as length of actions, nationality of subjects, or camera angles. This data set comprises 4528 samples depicting 7 action categories (up to 46 subcategories) performed by 74 subjects. To verify the challengeness of the data set, three feature representation methods are evaluated, which are depth motion maps, spatiotemporal depth cuboid similarity feature, and curvature space scale. Results show that the merged large-scale data set is more realistic and challenging and therefore more suitable for benchmarking.


2007 ◽  
Vol 1 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Pietro Valdastri ◽  
Keith Houston ◽  
Arianna Menciassi ◽  
Paolo Dario ◽  
Arne Sieber ◽  
...  

This paper reports a miniaturized triaxial force sensorized cutting tool for minimally invasive robotic surgery. This device exploits a silicon-based microelectromechanical system triaxial force sensor that acts as the core component of the system. The outer diameter of the proposed device is less than 3mm, thus enabling the insertion through a 9 French catheter guide. Characterization tests are performed for both normal and tangential loadings. A linear transformation relating the sensor output to the external applied force is introduced in order to have a triaxial force output in real time. Normal force resolution is 8.2bits over a force range between 0N and 30N, while tangential resolution is 7 bits over a range of 5N. Force signals with frequencies up to 250Hz can successfully be detected, enabling haptic feedback and tissue mechanical properties investigation. Preliminary ex vivo muscular tissue cutting experiments are introduced and discussed in order to evaluate the device overall performances.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6762
Author(s):  
Jung Hyuk Lee ◽  
Geon Woo Lee ◽  
Guiyoung Bong ◽  
Hee Jeong Yoo ◽  
Hong Kook Kim

Autism spectrum disorder (ASD) is a developmental disorder with a life-span disability. While diagnostic instruments have been developed and qualified based on the accuracy of the discrimination of children with ASD from typical development (TD) children, the stability of such procedures can be disrupted by limitations pertaining to time expenses and the subjectivity of clinicians. Consequently, automated diagnostic methods have been developed for acquiring objective measures of autism, and in various fields of research, vocal characteristics have not only been reported as distinctive characteristics by clinicians, but have also shown promising performance in several studies utilizing deep learning models based on the automated discrimination of children with ASD from children with TD. However, difficulties still exist in terms of the characteristics of the data, the complexity of the analysis, and the lack of arranged data caused by the low accessibility for diagnosis and the need to secure anonymity. In order to address these issues, we introduce a pre-trained feature extraction auto-encoder model and a joint optimization scheme, which can achieve robustness for widely distributed and unrefined data using a deep-learning-based method for the detection of autism that utilizes various models. By adopting this auto-encoder-based feature extraction and joint optimization in the extended version of the Geneva minimalistic acoustic parameter set (eGeMAPS) speech feature data set, we acquire improved performance in the detection of ASD in infants compared to the raw data set.


Sign in / Sign up

Export Citation Format

Share Document