scholarly journals Characterization of organic-rich mineral debris revealed by rapid glacier retreat, Indren Glacier, European Alps

2021 ◽  
Vol 18 (6) ◽  
pp. 1521-1536
Author(s):  
Michele Freppaz ◽  
Mark W. Williams ◽  
Jacopo Gabrieli ◽  
Roberta Gorra ◽  
Ilaria Mania ◽  
...  

AbstractIn the summer of 2003 and 2004, characterized by a rapid glacier retreat, a stony surface covered by well-structured organic-rich mineral debris was observed very close to the Indren glacier terminus (Monte Rosa Massif, NW Italy, 3100 m ASL), on an area covered by the glacier tongue till the year before. The origin and type of this organic-rich material were investigated, in order to detect their characteristics, potential sources and fate within the foreland system. The deposits were dated using Carbon-14 and analyzed for the chemical characteristics of the organic component, the elemental composition of the mineral fraction and presence of microbial markers. The material, granular and dark in color, had a total organic carbon (TOC) content ranging between 17.4 ± 0.39 and 28.1 ± 0.63 g kg−1 dry weight (dw), significantly higher than the surrounding glacial till (~ 1.4 g kg−1 dw), although only 0.33% of it was in water soluble form. Microbial carbon (C) and nitrogen (N) accounted for 10.6% and 3.13% of TOC and total N, respectively. Dissolved nitrogen (N), mainly present as ammonium, represented 2.40% of the total N. The low aromatic component and large presence of nitrogen (N)-derived compounds suggested that most of the organic carbon (OC) in these organic-rich mineral deposits was derived from microbial cells, although the high average radiocarbon age of about 2900 years may also point to the contribution of aeolian depositions of anthropogenic or natural origin. Elemental composition and the crustal enrichment factor of trace elements in the mineral fraction of the aggregates corroborated the hypothesis that most part of the accumulated material derived from ice meltwater. Some indicators of the colonization of these deposits by microbial communities were also reported, from the abundance of DNA and phylogenetic markers, to the presence of bacterial taxa commonly able to thrive in similar habitats. All these elements suggested that such kind of deposits may have a potential role as energy and nutrient sources in recently deglaciated areas, highlighting the necessity to better understand the processes underlying their formation and their evolution.

2020 ◽  
Author(s):  
Günther Prasicek ◽  
François Mettra ◽  
Stuart Lane ◽  
Frédéric Herman

<p>Recent climate change is causing rapid retreat of alpine glaciers around the globe. As ice melts and glaciers thin, glacier motion and subglacial processes will change. One of the most relevant aspects for down-valley environments, settlements and infrastructure is the potential change in flow discharge and sediment output.</p><p>Here we present the results of an ongoing monitoring program at the Gorner Glacier, Switzerland, the second-largest glacier system in the European Alps.  During the melt season of 2018 and 2019, stage and turbidity were monitored with a 5 minute frequency along a turbulent section of the glacial river, located approximately 1 km downstream of the glacier terminus. For calibration of the turbidity measurements, daily water samples were obtained with an automated pump sampler, supported by additional intermittent manual sampling. The data is complemented by a discharge time series that also contains information on the flushing of a bedload trap at the hydro power weir located about 2 km downstream of the glacier terminus. The discharge and flushing data have a resolution of 15 minutes.  Turbidity and discharge allow estimation of the output of suspended load, while the flushing data inform about bedload. We further measured total organic carbon content of the water samples to infer the water and sediment source.</p><p>Data suggest a clear seasonal pattern, not only in discharge and sediment output, but also in suspended sediment concentration (SSC). While SSC is high during snow melt and in early summer, it decreases rapidly in July and stays at similar levels until September. This may indicate exhaustion of sediment storage beneath the glacier, but could also result from a change in subglacial regime, e.g. from a decrease in subglacial water pressure due to the progressive opening of subglacial cavities during the melt season. High fractions of organic carbon, presumably due to lateral sediment input from hillslopes, occur during storms throughout the entire season.</p>


2015 ◽  
Vol 26 (4) ◽  
pp. 26-29
Author(s):  
Paweł Konieczyński ◽  
Marek Wesołowski

Abstract The aim of the investigation was is to identify differences in an elemental composition (P, Fe, Mn, Zn and Cu) and their total flavonoids contents of medicinal herbs originating from 9 botanical species, harvested in Poland, Lithuania and Ukraine. Metallic elements were determined by FAAS technique in mg∙kg-1 of dry weight (d. wt) in the order: Fe > Mn > Zn > Cu in plant materials, and in infusions: Mn > Zn > Fe > Cu. The ratio of water-soluble form to total amount of a metal was as follows: 66.2% for Cu, 22.4% for Mn, 19.7% for Zn and 3.8% for Fe. The contents of P total, P inorganic and total flavonoids were determined by UV/Vis spectroscopic methods. By using of analysis of variance, correlation and cluster analyses it has been shown that a significant impact on the diversity of samples has the genetic factor - belonging to a particular botanical species of medicinal plant. The origin of investigated plants proved to be statistically significant only in the case of total Fe concentration, which was higher (α < 0.05) for the samples grown in Ukraine. A number of significant correlations was also obtained (r > 0.7) between: P total - P inorganic, Mn total - Mn extractable and Cu total - Cu extractable, also ( r > 0.5) between: total flavonoids - Cu extractable, P total - Cu total, P total - Cu extractable, P inorganic - Zn total. Moreover, comparison of the results of P, Fe, Mn, Zn and Cu determination in infusions of medicinal plants with the norms of RDA has shown that a significant amount (several percentage) of Mn and Cu can be supplemented to human organism with 2 cups of infusions prepared from Helichrysi inforescentia and Hyperici herba.


2022 ◽  
Vol 9 (2) ◽  
pp. 3379-3386
Author(s):  
S Syarifinnur ◽  
Yulia Nuraini ◽  
Budi Prasetya

This study was conducted to determine the effect of compost and vermicompost from market organic waste on the soil chemical properties and the growth of maize. The treatments tested were three doses of compost (2.5, 5, and 10 t/ha), three doses of vermicompost (2.5, 5, and 10 t/ha), and one control (without compost or vermicompost). At the time of harvest (10 weeks after planting), maize shoot dry weight, root dry weight, cob length, cob diameter, cob with husk, and cob dry weight, as well as the soil chemical properties organic carbon (C), total nitrogen (N), total phosphorus (P), available P, total potassium (K), and pH were observed. Maize plant height, leaf number, and stem diameter were observed at 2, 4, 6, and 8 weeks after planting. The results showed that the application of compost and vermicompost significantly affected soil chemical properties and the yield of maize. The application of 10 t vermicompost/ha resulted in the highest yield of maize and highest increase of soil organic carbon, total phosphorus available phosphorus, total potassium, and pH by 7.21%, 112.41%, 287.44%, 85.44% and 17.58%, respectively. The application of 10 t compost/ha resulted in the highest increase of soil total N by 44%.


Author(s):  
Wen ◽  
Wu ◽  
Yang ◽  
Jiang ◽  
Zhong

Nutrients released from sediments have a significant influence on the water quality in eutrophic lakes and reservoirs. To clarify the internal nutrient load and provide reference for eutrophication control in Yuqiao Reservoir, a drinking water source reservoir in China, pore water profiles and sediment core incubation experiments were conducted. The nutrients in the water (soluble reactive P (SRP), nitrate-N (NO3−-N), nitrite-N (NO2−-N), and ammonium-N (NH4+-N)) and in the sediments (total N (TN), total P (TP) and total organic carbon (TOC)) were quantified. The results show that NH4+-N was the main component of inorganic N in the pore water. NH4+-N and SRP were higher in the pore water than in the overlying water, and the concentration gradient indicated a diffusion potential from the sediment to the overlying water. The NH4+-N, NO3−-N, and SRP fluxes showed significant differences amongst the seasons. The NH4+-N and SRP fluxes were significantly higher in the summer than in other seasons, while NO3−-N was higher in the autumn. The sediment generally acted as a source of NH4+-N and SRP and as a sink for NO3−-N and NO2−-N. The sediments release 1133.15 and 92.46 tons of N and P, respectively, to the overlying water each year.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yankun Sun ◽  
Jiaqi Xu ◽  
Xiangyang Miao ◽  
Xuesong Lin ◽  
Wanzhen Liu ◽  
...  

AbstractAs the global population continues to increase, global food production needs to double by 2050 to meet the demand. Given the current status of the not expansion of cultivated land area, agronomic seedlings are complete, well-formed and strong, which is the basis of high crop yields. The aim of this experiment was to study the effects of seed germination and seedling growth in response to silicon (from water-soluble Si fertilizer). The effects of Si on the maize germination, seedling growth, chlorophyll contents, osmoprotectant contents, antioxidant enzyme activities, non-enzymatic antioxidant contents and stomatal characteristics were studied by soaking Xianyu 335 in solutions of different concentrations of Si (0, 5, 10, 15, 20, and 25 g·L−1). In this study, Si treatments significantly increased the seed germination and per-plant dry weight of seedlings (P < 0.05), and the optimal concentration was 15 g·L−1. As a result of the Si treatment of the seeds, the chlorophyll content, osmotic material accumulation and antioxidant defence system activity increased, reducing membrane system damage, reactive oxygen species contents, and stomatal aperture. The results suggested that 15 g·L−1 Si significantly stimulated seed germination and promoted the growth of maize seedlings, laying a solid foundation for subsequent maize growth.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 503
Author(s):  
Györgyi Horváth ◽  
Eszter Csikós ◽  
Eichertné Violetta Andres ◽  
Tímea Bencsik ◽  
Anikó Takátsy ◽  
...  

Melilotus officinalis is known to contain several types of secondary metabolites. In contrast, the carotenoid composition of this medicinal plant has not been investigated, although it may also contribute to the biological activities of the drug, such as anti-inflammatory effects. Therefore, this study focuses on the isolation and identification of carotenoids from Meliloti herba and on the effect of isolated (all-E)-lutein 5,6-epoxide on primary sensory neurons and macrophages involved in nociception, as well as neurogenic and non-neurogenic inflammatory processes. The composition of the plant extracts was analyzed by high performance liquid chromatography (HPLC). The main carotenoid was isolated by column liquid chromatography (CLC) and identified by MS and NMR. The effect of water-soluble lutein 5,6-epoxide-RAMEB (randomly methylated-β-cyclodextrin) was investigated on Ca2+-influx in rat primary sensory neurons induced by the activation of the transient receptor potential ankyrin 1 receptor agonist to mustard-oil and on endotoxin-induced IL-1β release from isolated mouse peritoneal macrophages. (all-E)-Lutein 5,6-epoxide significantly decreased the percent of responsive primary sensory neurons compared to the vehicle-treated stimulated control. Furthermore, endotoxin-evoked IL-1β release from macrophages was significantly decreased by 100 µM lutein 5,6-epoxide compared to the vehicle-treated control. The water-soluble form of lutein 5,6-epoxide-RAMEB decreases the activation of primary sensory neurons and macrophages, which opens perspectives for its analgesic and anti-inflammatory applications.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramona Wördemann ◽  
Lars Wiefel ◽  
Volker F. Wendisch ◽  
Alexander Steinbüchel

AbstractCyanophycin (multi-l-arginyl-poly-l-aspartic acid; also known as cyanophycin grana peptide [CGP]) is a biopolymer that could be used in various fields, for example, as a potential precursor for the synthesis of polyaspartic acid or for the production of CGP-derived dipeptides. To extend the applications of this polymer, it is therefore of interest to synthesize CGP with different compositions. A recent re-evaluation of the CGP synthesis in C. glutamicum has shown that C. glutamicum is a potentially interesting microorganism for CGP synthesis with a high content of alternative amino acids. This study shows that the amount of alternative amino acids can be increased by using mutants of C. glutamicum with altered amino acid biosynthesis. With the DM1729 mutant, the lysine content in the polymer could be increased up to 33.5 mol%. Furthermore, an ornithine content of up to 12.6 mol% was achieved with ORN2(Pgdh4). How much water-soluble or insoluble CGP is synthesized is strongly related to the used cyanophycin synthetase. CphADh synthesizes soluble CGP exclusively. However, soluble CGP could also be isolated from cells expressing CphA6308Δ1 or CphA6308Δ1_C595S in addition to insoluble CGP in all examined strains. The point mutation in CphA6308Δ1_C595S partially resulted in a higher lysine content. In addition, the CGP content could be increased to 36% of the cell dry weight under optimizing growth conditions in C. glutamicum ATCC13032. All known alternative major amino acids for CGP synthesis (lysine, ornithine, citrulline, and glutamic acid) could be incorporated into CGP in C. glutamicum.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2237
Author(s):  
Leonid Kaluzhskiy ◽  
Pavel Ershov ◽  
Evgeniy Yablokov ◽  
Tatsiana Shkel ◽  
Irina Grabovec ◽  
...  

Widespread pathologies such as atherosclerosis, metabolic syndrome and cancer are associated with dysregulation of sterol biosynthesis and metabolism. Cholesterol modulates the signaling pathways of neoplastic transformation and tumor progression. Lanosterol 14-alpha demethylase (cytochrome P450(51), CYP51A1) catalyzes one of the key steps in cholesterol biosynthesis. The fairly low somatic mutation frequency of CYP51A1, its druggability, as well as the possibility of interfering with cholesterol metabolism in cancer cells collectively suggest the clinical importance of CYP51A1. Here, we show that the natural flavonoid, luteolin 7,3′-disulfate, inhibits CYP51A1 activity. We also screened baicalein and luteolin, known to have antitumor activities and low toxicity, for their ability to interact with CYP51A1. The Kd values were estimated using both a surface plasmon resonance optical biosensor and spectral titration assays. Unexpectedly, in the enzymatic activity assays, only the water-soluble form of luteolin—luteolin 7,3′-disulfate—showed the ability to potently inhibit CYP51A1. Based on molecular docking, luteolin 7,3′-disulfate binding suggests blocking of the substrate access channel. However, an alternative site on the proximal surface where the redox partner binds cannot be excluded. Overall, flavonoids have the potential to inhibit the activity of human CYP51A1 and should be further explored for their cholesterol-lowering and anti-cancer activity.


1971 ◽  
Vol 24 (7) ◽  
pp. 1487 ◽  
Author(s):  
IR Smith ◽  
MD Sutherland

Green specimens of the comatulid crinoid, Comanthus parvicirrus timorensis J. Muller, yield to acetone three yellow water-soluble colouring matters, comaparvin sulphate, 6-methoxycomaparvin sulphate, and 6-methoxycomaparvin 5-methyl ether sulphate in approximately 0.1 %, 0.7 %, and 0.7 % yield respectively of the dry weight of the animal, Mild acid hydrolysis yields the corresponding phenols, the structures of which have been deduced largely by spectral studies as very probably 5,8-dihydroxy-10-methoxy-2-n-propyl-4H-naphtho[1,2-b]pyran-4-one (1), the 6-methoxy derivative of (1), and the 6-methoxy methyl ether of (1) respectively. A yellow colour variant of the same species yielded the same colouring matters in slightly different proportions. The calcareous skeleton contains what are probably polyhydroxynaphthoquinones in combined form.


Sign in / Sign up

Export Citation Format

Share Document