Surface Defects Control for ZnO Nanorods Synthesized Through a Gas-Assisted Hydrothermal Process

2016 ◽  
Vol 46 (1) ◽  
pp. 432-438 ◽  
Author(s):  
Limin Zhao ◽  
Changhua Shu ◽  
Zhengfeng Jia ◽  
Changzheng Wang
2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900 ◽  
Author(s):  
Munir Ashraf ◽  
Frédéric Dumont ◽  
Christine Campagne ◽  
Philippe Champagne ◽  
Anne Perwuelz ◽  
...  

ZnO nanorods were grown on polyester fabric by hydrothermal process. The seeding of fabric to grow ZnO nanorods was necessary because they did not grow without seeding. An air plasma treatment was carried out on polyester fabric to generate polar groups which could attach ZnO seeds. ZnO nanorods were grown on these seeds. The generation of polar groups was confirmed by XPS analysis. The morphology of nanorods was characterized with SEM and TEM. The quantity of ZnO deposited on fabric in the form of nanorods was estimated to be 5.6 % w/w by atomic absorption spectroscopy. Two Gram negative bacteria; Escherichia coli and Pseudomonas aeruginosa and a Gram positive; Staphyloccocus aureus were used for antibacterial activity evaluation by qualitative method. E. coli and S. aureus were used for quantitative assessment by using NF ISO 20743:2009 Transfer Method. It was noted that the functionalized fabric prevented the growth of bacteria not only on and below the fabric but also in the immediate proximities for all three bacteria. It was also observed that the fabric was more effective against Gram positive as compared to Gram negative bacteria. Moreover, it was shown that UV pre-activation of functionalized fabric enhanced the antibacterial activity.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5667
Author(s):  
Priyanka Shrestha ◽  
Manoj Kumar Jha ◽  
Jeevan Ghimire ◽  
Agni Raj Koirala ◽  
Rajeshwar Man Shrestha ◽  
...  

Zinc oxide (ZnO) nanorods incorporated activated carbon (AC) composite photocatalyst was synthesized using a hydrothermal process. The AC was prepared from lapsi (Choerospondias axillaris) seed stone, an agricultural waste product, found in Nepal by the chemical activation method. An aqueous suspension of AC with ZnO precursor was subjected to the hydrothermal treatment at 140 °C for 2 h to decorate ZnO rods into the surface of AC. As-obtained ZnO nanorods decorated activated carbon (ZnO/AC) photocatalyst was characterized by various techniques, such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) spectroscopy. Results showed that highly crystalline hexagonal ZnO nanorods were effectively grown on the surface of porous AC. The photocatalytic property of the as-prepared ZnO/AC composite was studied by degrading methylene blue (MB) dye under UV-light irradiation. The ZnO/AC composite showed better photocatalytic property than that of the pristine ZnO nanorods. The enhanced photocatalytic performance in the case of the ZnO/AC composite is attributed to the combined effects of ZnO nanorods and AC.


2008 ◽  
Vol 8 (12) ◽  
pp. 6551-6557 ◽  
Author(s):  
A. Escobedo Morales ◽  
U. Pal ◽  
M. Herrera Zaldivar

Incorporation of dopants in optoelectronic semiconductor nanostructures has been a matter of great interest in recent times. While such doping has been performed almost routinely using physical methods, use of low-cost chemical techniques for that purpose is still rare. We incorporated antimony in zinc oxide (ZnO) nanostructures through a low temperature hydrothermal method. In as-grown nanostructures, antimony remains partially in Sb2O3 phase. On thermal annealing at 500 °C, it dissociates and antimony incorporates into ZnO mainly by substituting zinc from the crystal lattice. Incorporation of Sb drastically modifies the morphology of the ZnO nanostructures. While incorporation of Sb in low concentration promotes the formation of uniform prismatic ZnO nanorods probably due to catalytic effect, high concentration of Sb causes the formation of rounded shaped nanoparticles due to high interfacial compressive stress. Incorporated Sb in the ZnO nanostructures remains inhomogeneously distributed. The optical band gap of the ZnO nanostructures increases a bit for lightly doped samples but it decreases for heavy doping.


2010 ◽  
Vol 434-435 ◽  
pp. 646-648 ◽  
Author(s):  
Jenn Kai Tsai ◽  
Ju Yu Wei ◽  
Yi Chi Chen ◽  
You Cheng Jheng ◽  
Teen Hang Meen

In this study, well-aligned single-crystalline zinc oxide (ZnO) nanorods arrays were synthesized on Si substrate by simple hydrothermal process in dilute aqueous solution which consisting of zinc nitrate tetrahydrate (Zn(NO3)2•4H2O) and hexamethyltetramine (C6H12N4, HMT) at 90 °C, in the autoclave. ZnO thin film was pre-deposited on Si substrate by the sputter deposition to serve as the seed layer. Aluminum nitrite (Al(NO3)3) also has been mixed into reaction solution. Al doped ZnO nanorod arrays were fabricated successfully. ZnO nanorods were characterized by high resolution X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, and photoluminescence measurement.


2012 ◽  
Vol 229-231 ◽  
pp. 239-242 ◽  
Author(s):  
Sin Tee Tan ◽  
Akrajas Ali Umar ◽  
Muhammad Yahaya ◽  
Chi Chin Yap ◽  
Muhamad Mat Salleh

This paper reports a study of the effect of ZnO nanoseed structure on the growth orientation of ZnO nanorods prepared using a seed-mediated hydrothermal process. In this work, we prepared vertical align ZnO nanorods by a two-step process namely seeding and growth process. ZnO nanoseed on a silicon oxide (SiO2) coated silicon (Si) substrate was deposited by rf- sputtering under argon gas atmosphere at room temperature (ca. 25ºC). The samples were annealed in air at 500 °C for both different annealing times namely 1 and 2 h to obtain nanoseed with varies structure and crystallinity. The ZnO nanorods were then grown from the nanoseed via a hydrothermal process in a growth solution that contained equimolar of zinc nitrate hexahydrate and hexamethylenetetramine (HMT) at 70°C for 4 h. It was found that the durations of annealing treatment on the nanoseed indicated an effective modification on the crystal growth orientation of the nanorods, which preferred well-aligned orientation for shorter annealing time and random growth for longer annealing time. These results should find potential use for manipulating the nanostructure growth of ZnO for applied in current existing application.


2014 ◽  
Vol 31 (2) ◽  
pp. 104-107 ◽  
Author(s):  
Qazi Humayun ◽  
Muhammad Kashif ◽  
Uda Hashim

Purpose – The purpose of this study was to investigate the performance of a single-bridge ZnO nanorod as a photodetector. Design/methodology/approach – The fabrication of the design sensor with ∼6-μm gap Schottky contacts and bridging of the ZnO nanorod were based on conventional photolithography and wet-etching technique. Prior to bridging, the ZnO nanorods were grown by the hydrothermal process. The 0.35 M seed solution was prepared by dissolving zinc acetate dihydrate in 2-methoxyethanol, and monoethanolamine, which acts as a stabilizer, was added drop-wise. Before starting the solution deposition, and oxide, titanium (Ti) and gold (Au) layer deposition, p-type (100) silicon substrate was cleaned with Radio Corporation of America (RCA1) and RCA2, followed by dipping in diluted hydrofluoric acid. The aged solution was dropped onto the surface of the Au microgap structure, using a spin coater at a spinning speed of 3,000 rpm for 45 seconds, and then dried at 300°C for 15 minutes, followed by annealing at 400°C for 1 hour. The hydrothermal growth was carried out in an aqueous solution of zinc nitrate hexahydrate (0.025 M) and hexamethyltetramine (0.025 M). Findings – In this study, ZnO nanorods were grown on a SiO2 substrate by the hydrothermal method. Microgap electrodes with ∼6-μm spacing were achieved by using the wet-etching process. After the growth process, an area-selective mask was utilized to reduce the number of rods between the nearby gap areas. The obtained single ZnO nanorod was tested for the UV-sensing application. The single ZnO nanorod photodetector exhibited a UV photoresponse, thereby indicating potential as a cost-effective UV detector. The response and recovery times of the fabricated device were 65 and 95 seconds, respectively. Structural analysis was captured using X-ray Diffraction (XRD), whereas surface morphology was determined using scanning electron microscopy. Originality/value – This paper demonstrates the effect of UV photon on a single-bridge ZnO nanorod between microgap electrodes.


2015 ◽  
Vol 52 (5) ◽  
pp. 20-27 ◽  
Author(s):  
V. Gerbreders ◽  
P. Sarajevs ◽  
I. Mihailova ◽  
E. Tamanis

Abstract The simple analysis method has been introduced for the kinetic analysis of the hydrothermal growth. The zinc oxide nanorod arrays have been synthesized via a hydrothermal process. Zinc nitrate hexahydrate (Zn(NO3)2 · 6H2O) has been used as the precursor in the presence of hexamethylenetetramine (C6H12N4) for the formation of ZnO nanostructures. Long-term isothermal growth kinetics of ZnO nanorods has been investigated. The effect of the solution temperature (70-90 ℃) on the kinetics of the hydrothermal growth of ZnO nanorods has been examined. An extensive analysis by scanning electron microscopy, energy dispersive spectroscopy and x-ray diffraction has revealed that the as-synthesized ZnO nanorod arrays are well-crystalline and possessing hexagonal wurtzite structure. These ZnO films have promising potential advantages in microelectronic and optoelectronic applications.


2021 ◽  
Author(s):  
Yanyan Dong ◽  
Xiaojie Zhu ◽  
Fei Pan ◽  
Baiwen Deng ◽  
Zhicheng Liu ◽  
...  

Abstract Inspired by the nature, biomass-derived carbon attracts many attentions as the electromagnetic wave absorption (EMA) material owing to its advantages including abundant, low cost, renewable and environmentally friendly. However, it is difficult to make further breakthrough in effective absorption bandwidth (EAB) due to the impedance mismatch. In this work, mace-like carbon fibers/ZnO nanorods composites (BDCFs@ZnO) derived from Typha orientalis were prepared via a carbonization process and a subsequent hydrothermal process for the first time. The unique hollow structure of BDCFs and the construction of 3D interconnected conductive network led to the strong conduction loss and multiple reflection. The BDCFs sample possesses an excellent EMA performance with an ultralow filling ratio of only 5wt%. After directionally growing of the ZnO nanorods, an exceptional RL of -62.35 dB at 14.12 GHz and the EAB achieves 6.8 GHz at the thickness of 2.29 mm at a filling ratio of 15wt% were revealed. Mace-like ZnO with suitable permittivity effectively avoid the reflection result from direct contraction between EMW and carbon fiber, further improving impedance match. Simultaneously, a dielectric sum-quotient model was proposed to analyze the EMA performance of the samples. This work not only offers an inspiration for the development of dielectric loss-type EMA materials with lightweight and strong EMA performance by a sustainable, low-cost and easily available approach, but also provides an important strategy toward biomass-derived carbon-fiber-based composites in other fields.


Sign in / Sign up

Export Citation Format

Share Document