Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

2017 ◽  
Vol 27 (1-2) ◽  
pp. 25-34 ◽  
Author(s):  
Shu-Wei Yao ◽  
Guan-Jun Yang ◽  
Cheng-Xin Li ◽  
Chang-Jiu Li
1989 ◽  
Vol 157 ◽  
Author(s):  
Jia-Shu Sun

ABSTRACTIn this work the effects of laser melting on the micro-morphology, structures and solid particle erosion behaviors of plasma spray alumina, alumina-titania and zirconia coatings have been studied. The results have indicated that laser melting has modified the micro-mophologies and structures of coatings, eliminated the porosity of sprayed coatings and increased the erosion resistance of ceramic coatings. The erosion mechanisms of ceramic coatings have been investigated.


2021 ◽  
Author(s):  
Tuan Nguyen Van ◽  
Tuan Anh Nguyen ◽  
Phuong Nguyen Thi ◽  
Ha Pham Thi ◽  
Ly Pham Thi ◽  
...  

Abstract Thermally sprayed Al2O3-TiO2 ceramic coatings provide exceptional hardness and corrosion and wear resistance, but the high velocities at which they are applied result in an inherently porous structure that requires some type of remediation. This study evaluates the effectiveness of ultrasonic aluminum phosphate sealing treatments on plasma sprayed Al2O3-40TiO2 ceramic coatings. The sealants were applied with and without ultrasonication (20-40 kHz) and were assessed using SEM/EDX analysis, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Test data indicate that optimum sealing, corresponding to the highest values of corrosion protection and erosion resistance, are achieved under ultrasonication at 30 kHz for 5 hours.


Author(s):  
K.R. Subramanian ◽  
A.H. King ◽  
H. Herman

Plasma spraying is a technique which is used to apply coatings to metallic substrates for a variety of purposes, including hardfacing, corrosion resistance and thermal barrier applications. Almost all of the applications of this somewhat esoteric fabrication technique involve materials in hostile environments and the integrity of the coatings is of paramount importance: the effects of process variables on such properties as adhesive strength, cohesive strength and hardness of the substrate/coating system, however, are poorly understood.Briefly, the plasma spraying process involves forming a hot plasma jet with a maximum flame temperature of approximately 20,000K and a gas velocity of about 40m/s. Into this jet the coating material is injected, in powder form, so it is heated and projected at the substrate surface. Relatively thick metallic or ceramic coatings may be speedily built up using this technique.


2021 ◽  
Vol 409 ◽  
pp. 126838
Author(s):  
Xinlong Wei ◽  
Wuyan Zhu ◽  
Aolin Ban ◽  
Dejia Zhu ◽  
Chao Zhang ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Xiaoyu Wu ◽  
Shufeng Xie ◽  
Kangwei Xu ◽  
Lei Huang ◽  
Daling Wei ◽  
...  

Burning loss of graphene in the high-temperature plasma-spraying process is a critical issue, significantly limiting the remarkable performance improvement in graphene reinforced ceramic coatings. Here, we reported an effective approach to enhance the graphene retention, and thus improve the performance of plasma-sprayed alumina/graphene nanoplatelets (Al2O3/GNPs) coatings by heat treatment of agglomerated Al2O3/GNPs powders. The effect of powder heat treatment on the microstructure, GNPs retention, and electrical conductivity of Al2O3/GNPs coatings were systematically investigated. The results indicated that, with the increase in the powder heat treatment temperature, the plasma-sprayed Al2O3/GNPs coatings exhibited decreased porosity and improved adhesive strength. Thermogravimetric analysis and Raman spectra results indicated that increased GNPs retention from 12.9% to 28.4%, and further to 37.4%, as well as decreased structural defects, were obtained for the AG, AG850, and AG1280 coatings, respectively, which were fabricated by using AG powders without heat treatment, powders heat-treated at 850 °C, and powders heat-treated at 1280 °C. Moreover, the electrical conductivities of AG, AG850, and AG1280 coatings exhibited 3 orders, 4 orders, and 7 orders of magnitude higher than that of Al2O3 coating, respectively. Powder heat treatment is considered to increase the melting degree of agglomerated alumina particles, eventually leaving less thermal energy for GNPs to burn; thus, a high retention amount and structural integrity of GNPs and significantly enhanced electrical conductivity were achieved for the plasma-sprayed Al2O3/GNPs coatings.


1989 ◽  
Vol 181 (1-2) ◽  
pp. 407-415 ◽  
Author(s):  
F Beltzung ◽  
G Zambelli ◽  
E Lopez ◽  
A.R Nicoll

Sign in / Sign up

Export Citation Format

Share Document