Crushing Resistance Analysis and Cross-Sectional Parameters Optimization of Flexible Pipe Carcass Layer

Author(s):  
Yonghui Liu ◽  
Feng Guan ◽  
Feng Wan
2016 ◽  
Vol 821 ◽  
pp. 183-190
Author(s):  
Jan Brůha ◽  
Drahomír Rychecký

Presented paper deals with modelling of a twisted blade with rhombic shroud as one-dimensional continuum by means of Rayleigh beam finite elements with varying cross-sectional parameters along the finite elements. The blade is clamped into a rotating rigid disk and the shroud is considered to be a rigid body. Since the finite element models based on the Rayleigh beam theory tend to slightly overestimate natural frequencies and underestimate deflections in comparison with finite element models including shear deformation effects, parameter tuning of the blade is performed.


Author(s):  
Suping Wen ◽  
Wenbo Wang ◽  
Zhixuan Zhang

This paper presents a study of cross-sectional parameters and optimal drag reduction performance specifically for drag reduction in rotating microgroove applications. Rotating triangular microgrooves with nine asymmetrical and symmetrical cross-sections were numerically studied. In addition, a representative symmetrical rotating microgroove was experimentally tested. Positive asymmetrical microgrooves (including symmetrical microgrooves) were found to be sensitive to rotating Reynolds numbers and produced more significant drag reduction. Compared with a dimensioned asymmetry variable and other dimensionless parameters, the dimensionless asymmetry variable i+ could be used to describe drag reduction performance, which captured both the influence of microgroove cross-sectional asymmetry and turbulence intensity. A maximum drag reduction of up to 8.9% was obtained at 9.2 i+. With the exception of the torque, the velocity shift obtained from dimensionless velocity profiles could also be used to predict drag reduction performance, which has the potential for wider and more comprehensive application for any drag reduction technology.


1979 ◽  
Vol 49 (9) ◽  
pp. 540-542 ◽  
Author(s):  
J.J. Hebert ◽  
E.K. Boylston ◽  
J.I. Wadsworth

1999 ◽  
Vol 121 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Ye Zhu ◽  
Jinhao Qiu ◽  
Junji Tani ◽  
Yuta Urushiyama ◽  
Yasuharu Hontani

A method of simultaneous optimization of structure and control using mixed H2 and H∞ norms of the transfer function as the objective function is proposed and the modeling and formulation of simultaneous optimization problems associated with this approach are discussed in this paper. Simultaneous optimization is realized by iteratively executing structural optimization and controller optimization. Both serial and parallel approaches to combine structural optimization and controller optimization are investigated. They are applied to the simultaneous optimization of the cross-sectional parameters of a spring-supported beam and the parameters of the controller used to actively suppress the vibration of the beam. The performance of both displacement output and control input is improved significantly after simultaneous optimization. The simulation results show the great potential advantages of simultaneous optimization over traditional design methods and the effectiveness of the proposed approach.


Author(s):  
Mickaël Mélot ◽  
Julien Berthon

Flexible pipes are made up of several different layers specifically designed to meet the requirements of our clients and API17J / ISO13628-2. In the pursuit of ever more efficient and reliable solutions, even in the world’s harshest and deepest offshore environments, TECHNIP’s R&D activity is focused on extending its product range by introducing new products and materials. As part of this innovation program, new polymers are constantly being investigated to assess their potential as a pressure sheath. The pressure sheath is the most critical thermoplastic sheath within the structure. Its role is to contain internal fluid and transfer internal pressure to the pressure vault layer outside it. To fulfill that mission, this polymer must be leakproof and perform over wide temperature and pressure range. In operation condition, the presence of small flaws within the pressure sheath could propagate leading to failure and significant environmental and operational damages. Therefore, the manufacturing of such a polymer layer must conform with ever-higher levels of reliability and quality. This is the reason why a visual inspection of pressure sheath according to API17J / ISO13628-2 standards is mandatory. As a leitmotiv, TECHNIP dedicates a lot of effort, not only to extend the limits of the possible by introducing new materials, but also to take inspection further beyond standard requirements by developing dedicated on-line NDT control systems able to ensure layer high quality. Many people are familiar with the medical applications of ultrasonic imaging in which ultrasonic waves are used to create highly detailed cross-sectional pictures of internal organ. Medical echography is commonly performed with specialized multielement probe known as phased-array and their accompanying hardware and software. The applications of ultrasonic phased-array technology are not limited to medical diagnosis and in recent years, increasing use of these systems can be observed in industrial environment. Nevertheless, although phased-array systems on the market can provide new levels of information and visualization, they are manually and locally operated and are inappropriate to control polymer sheath over several kilometers during manufacturing. This paper presents a specific and automated ultrasonic system dedicated to manufacturing control of thermoplastics such as the pressure sheath. Developed by TECHNIP, and based on cutting edge ultrasonic technology used in aerospace and medicine, OPUS is a world-class NDT system able to prove that our pressure sheaths meet design criteria and achieve the highest quality level.


Sign in / Sign up

Export Citation Format

Share Document