Air flow patterns and noise analysis inside high speed angular contact ball bearings

2015 ◽  
Vol 22 (9) ◽  
pp. 3358-3366 ◽  
Author(s):  
Qiang Zhai ◽  
Ke Yan ◽  
You-yun Zhang ◽  
Yong-sheng Zhu ◽  
Ya-tai Wang
2021 ◽  
Author(s):  
Song Deng ◽  
Guiqiang Zhao ◽  
Dongsheng Qian ◽  
Hua Lin

Abstract To achieve effective cooling for high speed ball bearings, an investigation on the effect of bearing structure on oil-air flow and temperature inside bearing chamber is necessary. However, accurately defining boundary conditions of CFD model for high speed ball bearings has not been addressed completely. Adopting an improved dynamic model of bearings to calculate movements of balls and power loss to set the movement boundary and heat source of CFD model at high-low speeds and light-heavy loads. Then, rotational speed of cage and temperature of outer ring at various loads are tested to validate this proposed method. At high speeds, enlarging sealing degree of outlet not only reduces the temperature rise of bearings and improves the uniformity of temperature distribution, but also promotes the formation of oil-film on balls’ surfaces without increasing power loss. Yet it can reduce the temperature rise but can’t markedly improve the formation of oil-film at low and ultra-high speeds. Moreover, half birfield cage facing nozzle plays an important role in improving oil volume fraction inside the bearing cavity to reduce the temperature rise of bearings, and the next is birfield cage, they are again corrugated cage and half birfield cage back towards nozzle. These research results provide theoretical guidance for the improvement of bearing structure.


2021 ◽  
pp. 1-11
Author(s):  
Song Deng ◽  
Guiqiang Zhao ◽  
Dongsheng Qian ◽  
Shaofeng Jiang ◽  
Lin Hua

Abstract An improved nonlinear dynamic model of high speed ball bearings with elastohydrodynamic lubrication (EHL) is adopted to predict the movements of balls and power loss of ball bearings for defining the boundary conditions of computational fluid dynamics (CFD) model. Then, this method of combining nonlinear dynamic and CFD models is are validated through the experimental verification. Subsequently, oil-air flow and temperature distribution inside the bearing chamber are studied at low and high speeds, and light and heavy loads. The effect of nozzle's position on the formation of oil film and heat dissipation is revealed under combined loads. The research results provide a theoretical basis for engineering application of high speed rolling bearings.


1995 ◽  
Vol 347 (1322) ◽  
pp. 397-412 ◽  

In previous studies we related the mechanical properties of spider trichobothria to a generalized mathematical model of the movement of hair and air in filiform medium displacement receivers. We now present experiments aimed at understanding the complex stimulus fields the trichobothrial system is exposed to under natural conditions. Using the elicitation of prey capture as an indicator and a tethered humming fly as a stimulus source, it has been shown that the behaviourally effective range of the trichobothrial system in Cupiennius salei Keys, is approximately 20 cm in all horizontal directions. Additionally, the fly still elicits a suprathreshold deflection of trichobothria while distanced 50-70 cm from the spider prosoma. To gain insight into the fluid mechanics of the behaviourally effective situation we studied: first, undisturbed flow around the spider in a wind tunnel; second, background flow the spider is exposed to in the field; and third, flow produced by the tethered flying fly. 1. The motion of air around a complex geometrical structure like a spider is characterized by an uneven distribution of flow velocities over the spider body. With the flow approaching from the front, both the mean and r.m.s. values are higher above the legs than above the pro- and opisthosoma; the velocity in the wake behind the spider, however, is markedly decreased. The pattern of these gradients is more complicated when the spider’s horizontal orientation is changed with respect to the main flow direction. It introduces asymmetries, for exmple, increased vortical, unsteady flow on the leeward compared with the windward side. 2. Sitting on its dwelling plant and ambushing prey in its natural habitat, the background air flow around Cupiennius is characterized by low frequencies (< 10 Hz), a narrow frequency spectrum, and low velocities (typically below 0.1 m s -1 with less than 15% r.m.s. fluctuation). 3. The distinctive features of a biologically significant air flow (for example, that produced by the humming fly) seem to be a concentrated, i.e. directional unsteady, high speed flow of the order of 1 m s -1 , and a relatively broad frequency spectrum containing frequencies much higher than those of the background flow. For a spider, sitting on a solid substrate (a leaf of a bromeliad, for example), air speed just above the substrate increases and thus provides higher sensitivity when compared to a spider in a orb web, which is largely transparent to the airflow. The flow patterns stimulating the ensemble of the trichobothria contain directional cues in both the undisturbed flow and the flow due to prey cases.


Author(s):  
V. S. IVANOV ◽  
◽  
V. S. AKSENOV ◽  
S. M. FROLOV ◽  
P. A. GUSEV ◽  
...  

Modern high-speed unmanned aerial vehicles are powered with small-size turbojets or ramjets. Existing ramjets operating on the thermodynamic cycle with de§agrative combustion of fuel at constant pressure are efficient at flight Mach numbers M ranging from about 2 to 6.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


Author(s):  
Guan-Chung Ting ◽  
Kuang-Yuh Huang ◽  
Keng-Ning Chang

Bearings for high-speed rotors are the key component of dental handpieces. The friction induced by conventional ball bearings restricts its speed and reduces its efficiency. In order to significantly improve the efficiency of dental handpieces, a mini-type cartridge that integrates a turbine and a spindle with radial aerostatic bearings and axial passive magnetic bearings has been ingeniously designed and realized. Around the rotating spindle, there is a high-pressured air film built up by a pair of radial aerostatic bearings, and magnet rings are applied to create repulsive forces to axially support the rotating spindle. The high-pressured air film comes from the specifically designed separable orifice restrictors, which can be easily and precisely manufactured. Frictionless bearing effect can be achieved by aerostatic principle, and the magnetic principle is applied to create large repulsive force against the axial working force. A tri-directional air inlet is designed to reduce radial loading force of a spindle during working. The modularized form of the magneto-aerostatic bearing allows it to be easily assembled and replaced in the very compact space of a mini-type cartridge. Through analytical simulations with fluid-dynamics software (CFD) and experiments, the magneto-aerostatic bearing is optimized to bring out efficient performance in its limited space. The experiments have verified that its noise level is 15dB lower than the conventional cartridge with ball bearings, and its startup air pressure is reduced from 0.4 bar to 0.1 bar. Under the same operation conditions, the newly developed cartridge with magneto-aerostatic bearings creates twice higher speed than that of the conventional one.


2018 ◽  
Vol 70 (1) ◽  
pp. 15-22 ◽  
Author(s):  
De-xing Zheng ◽  
Weifang Chen ◽  
Miaomiao Li

Purpose Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not been addressed thoroughly. So far, most researchers only considered the convection effect between bearing housings and air, whereas the cooling/lubrication operation parameters and configuration effect were not taken into account when analyzing the thermal behaviors of bearings. This paper aims to analyze the structural constraints of high-speed spindle, structural features of bearing, heat conduction and convection to study the heat generation and transfer of high-speed angular contact ball bearings. Design/methodology/approach Based on the generalized Ohm’s law, the thermal grid model of angular contact ball bearing of high-speed spindle was first established. Next Gauss–Seidel method was used to solve the equations group by Matlab, and the nodes temperature was calculated. Finally, the bearing temperature rise was tested, and the comparative analysis was made with the simulation results. Findings The results indicate that the simulation results of bearing temperature rise for the proposed model are in better agreement with the test values. So, the thermal grid model established is verified. Originality/value This paper shows an improved model on forecasting temperature rise of high-speed angular contact ball bearings. In modeling, the cooling/lubrication operation parameters and structural constraints are integrated. As a result, the bearing temperature variation can be forecasted more accurately, which may be beneficial to improve bearing operating accuracy and bearing service life.


Author(s):  
Jacqueline Barber ◽  
Khellil Sefiane ◽  
David Brutin ◽  
Lounes Tadrist

Boiling in microchannels remains elusive due to the lack of full understanding of the mechanisms involved. A powerful tool in achieving better comprehension of the mechanisms is detailed imaging and analysis of the two phase flow at a fundamental level. We induced boiling in a single microchannel geometry (hydraulic diameter 727 μm), using a refrigerant FC-72, to investigate several flow patterns. A transparent, metallic, conductive deposit has been developed on the exterior of rectangular microchannels, allowing simultaneous uniform heating and visualisation to be conducted. The data presented in this paper is for a particular case with a uniform heat flux of 4.26 kW/m2 applied to the microchannel and inlet liquid mass flowrate, held constant at 1.33×10−5 kg/s. In conjunction with obtaining high-speed images and videos, sensitive pressure sensors are used to record the pressure drop profiles across the microchannel over time. Bubble nucleation, growth and coalescence, as well as periodic slug flow, are observed in the test section. Phenomena are noted, such as the aspect ratio and Reynolds number of a vapour bubble, which are in turn correlated to the associated pressure drops over time. From analysis of our results, images and video sequences with the corresponding physical data obtained, it is possible to follow visually the nucleation and subsequent both ‘free’ and ‘confined’ growth of a vapour bubble over time.


2021 ◽  
Vol 13 (9) ◽  
pp. 4748
Author(s):  
Edwin Villagran ◽  
Carlos Bojacá ◽  
Mohammad Akrami

The use of covered structures is an alternative increasingly used by farmers to increase crop yields per unit area compared to open field production. In Latin American countries such as Colombia, productive areas are located in with predominantly hillside soil conditions. In the last two decades, farmers have introduced cover structures adapted to these soil conditions, structures for which the behavior of factors that directly affect plant growth and development, such as microclimate, are still unknown. Therefore, in this research work, a CFD-3D model successfully validated with experimental data of temperature and air velocity was implemented. The numerical model was used to determine the behavior of air flow patterns and temperature distribution inside a Colombian passive greenhouse during daytime hours. The results showed that the slope of the terrain affects the behavior of the air flow patterns, generating thermal gradients inside the greenhouse with values between 1.26 and 16.93 °C for the hours evaluated. It was also found that the highest indoor temperature values at the same time were located in the highest region of the terrain. Based on the results of this study, future researches on how to optimize the microclimatic conditions of this type of sustainable productive system can be carried out.


1976 ◽  
Vol 98 (3) ◽  
pp. 463-469 ◽  
Author(s):  
C. R. Gentle ◽  
R. J. Boness

This paper describes the development of a computer program used to analyze completely the motion of a ball in a high-speed, thrust-loaded ball bearing. Particular emphasis is paid to the role of the lubricant in governing the forces and moments acting on each ball. Expressions for these forces due to the rolling and sliding of the ball are derived in the light of the latest fluid models, and estimates are also made of the cage forces applicable in this specific situation. It is found that only when lubricant viscoelastic behavior is considered do the theoretical predictions agree with existing experimental evidence.


Sign in / Sign up

Export Citation Format

Share Document