Realization of band-pass and low-pass filters on a single chip in terahertz regime

2015 ◽  
Vol 11 (1) ◽  
pp. 33-35 ◽  
Author(s):  
Lei Wang ◽  
Zhao-xin Geng ◽  
Xun-jun He ◽  
Ya-peng Cao ◽  
Yu-ping Yang ◽  
...  
Perception ◽  
1997 ◽  
Vol 26 (3) ◽  
pp. 253-268 ◽  
Author(s):  
Steven C Dakin

The relative contrast of features is known to be important in determining if they can be grouped. Two manipulations of feature contrast have previously been used to criticise models of visual grouping based on spatial filtering: high-pass filtering and reversal of contrast polarity. The effects of these manipulations are considered in the context of the perception of Glass patterns. It is shown that high-pass filtering elements, whilst destroying structure in the output of low-pass filters, do not significantly disrupt the output of locally band-pass filters. The finding that subjects can perceive structure in Glass patterns composed of high-pass features therefore offers no evidence against such spatial filtering mechanisms. Band-pass filtering models are shown to explain the rotation of perceived structure in Glass patterns composed of opposite contrast features. However, structure is correctly perceived in patterns composed of two ‘interleaved’ opposite contrast patterns, which is problematic for oriented filtering mechanisms. Two possible explanations are considered: nonlinear contrast transduction prior to filtering, and integration of local orientation estimates from first-order and second-order mechanisms.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Lanyong Zhang ◽  
Yixuan Du ◽  
Bing Li

Multiple carrier frequency detecting signals are transmitted simultaneously by multiple transmitters in multistatic sonar. The echoes mixed with different carrier frequency in the receiver. The different carrier frequency echoes must be separated from one another before features of echoes are extracted in the receiver. Such a problem can be solved by band-pass and low-pass filters. But the amount of operation by this way is too large for real-time realization. Thus this paper presents the technique of channelized receiver based on multiphase filter and the receiving schemes of echo. The proposed receiver has a smaller amount of operation compared to low-pass filter. At last, the feature extraction technology correlation processing and FDWT are introduced. In order to verify the feasibility of this scheme in multistatic sonar, the extracted features of original echo are contrasted with those of processed echo via simulation. Simulation results show that the proposed receiver provides considerable performance.


SIMULATION ◽  
1966 ◽  
Vol 6 (5) ◽  
pp. 323-336 ◽  
Author(s):  
Peter D. Hansen

Operational amplifiers can greatly simplify the design of high performance signal filters because they elimi nate the need for inductors and for impedance matching. Furthermore, use of active filters can result in reduc tion of weight, size, and cost. Filters designed to satisfy sophisticated mathematical criteria can be realized without resort to "equalization" or trimming. In this issue we discuss the design of operational amplifier and analog computer circuits suitable for use as low pass filters. We also discuss the commonly used mathematically designed filters, i.e. Butterworth, Chebyshev, and Bessel. In addition, we present two new types of theoretical filters, the Paynter and the Aver aging filters. Design data necessary for realizing these theoretical filters with amplifier circuits is provided. In the next issue we shall discuss the design of band pass, band reject, high pass and all pass active filter circuits.


Author(s):  
Telesphor Kamgaing ◽  
Jiangqi He ◽  
Rockwell Hsu

This paper discusses the design and integration of RF filters in multilayer organic substrate. Using a methodic approach, several low-pass and band-pass filters have been designed, fabricated and fully characterized. The electrical analysis clearly indicates, which of the low-pass filters is less susceptible to process variations and therefore more appropriate for high volume manufacturing. It is shown that these filters provide electrical performance similar to their commercially available ceramic counterparts while using relatively smaller real estate. All filters are fabricated in the innermost layers of a multilayer organic package substrate with embedded passives capability.


2012 ◽  
Vol 239-240 ◽  
pp. 1011-1017
Author(s):  
Ya Min Xu

Transmission fluctuation spectrometry (TFS) is a new method for particle analysis based on the statistical fluctuations of a transmission signal. With simple optical arrangement and easy operation, the method can be applied to real-time, online measurements. The transmission signal with fluctuations are analyzed by using 1st order band-pass filters, and the experimental data in the frequency domain are obtained. The particle size distribution (PSD) and particle concentration are extracted from the experimental data with the modifed Chahine interations. It is found that the measurements using band-pass filters are of better resolution in the PSD than those with low-pass filters.


2018 ◽  
Vol 1 (1) ◽  
pp. 47-55
Author(s):  
Reşat Tüzün ◽  
Nursel Akçam

Microstrip filters have a significant role in Radio Frequency/Microwave applications. Microstrip filters are common on microwave circuits, satellite communications, radars, test equipments and so on. Because microstrip filters are compact, cheap and easy to produce, they are highly preferred for microwave applications. Microwave filter; microwave system is a two-ported element used to control the frequency response at a certain point by attenuating the frequencies in the stop band by transmitting in the frequency band. Typical frequency responses are low pass, high pass, band pass and band stop. Also approaches such as Butterworth, Chebyshev, and Elliptic are defining filter characteristics. In this paper, microstrip filters havign Chebyshev, Elliptic and Maximally Flat approaches were designed. For example Chebyshev filter of design filters having 6 GHz cut frequency and having 46,34 dB at 6,6 GHz. The insertion loss is -3,66 dB at 6 GHz. AWR Sonnet is used for the simulation and analysis of this filters.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750170 ◽  
Author(s):  
Jerzy Baranowski ◽  
Paweł Piątek

Fractional band-pass filters are a promising area in the signal processing. They are especially attractive as a method for processing of biomedical signals, such as EEG, where large signal distortion is undesired. We present two structures of fractional band-pass filters: one as an analog of classical second-order filter, and one arising from parallel connection of two fractional low-pass filters. We discuss a method for filter implementation — Laguerre Impulse Response Approximation (LIRA) — along with sufficient conditions for when the filter can be realized with it. We then discuss methods of filter tuning, in particular we present some analytical results along with optimization algorithm for numerical tuning. Filters are implemented and tested with EEG signals. We discuss the results highlighting the possible limitations and potential for development.


1968 ◽  
Vol 11 (1) ◽  
pp. 63-76
Author(s):  
Donald C. Teas ◽  
Gretchen B. Henry

The distributions of instantaneous voltage amplitudes in the cochlear microphonic response recorded from a small segment along the basilar membrane are described by computing amplitude histograms. Comparisons are made between the distributions for noise and for those after the addition to the noise of successively stronger sinusoids. The amplitudes of the cochlear microphonic response to 5000 Hz low-pass noise are normally distributed in both Turn I and Turn III of the guinea pig’s cochlea. The spectral composition of the microphonic from Turn I and from Turn III resembles the output of band-pass filters set at about 4000 Hz, and about 500 Hz, respectively. The normal distribution of cochlear microphonic amplitudes for noise is systematically altered by increasing the strength of the added sinusoid. A decrease of three percent in the number of small amplitude events (±1 standard deviation) in the cochlear microphonic from Turn III is seen when the rms voltage of a 500 Hz sinusoid is at −18 dB re the rms voltage of the noise (at the earphone). When the rms of the sinusoid and noise are equal, the decrease in small voltages is about 25%, but there is also an increase in the number of large voltage amplitudes. Histograms were also computed for the output of an electronic filter with a pass-band similar to Turn III of the cochlea. Strong 500 Hz sinusoids showed a greater proportion of large amplitudes in the filter output than in CM III . The data are interpreted in terms of an anatomical substrate.


2015 ◽  
Vol E98.C (2) ◽  
pp. 156-161
Author(s):  
Hidenori YUKAWA ◽  
Koji YOSHIDA ◽  
Tomohiro MIZUNO ◽  
Tetsu OWADA ◽  
Moriyasu MIYAZAKI
Keyword(s):  
Ka Band ◽  
Low Pass ◽  

Sign in / Sign up

Export Citation Format

Share Document