PLA/HA Multiscale Nano-/Micro-Hybrid 3D Scaffolds Provide Inductive Cues to Stems Cells to Differentiate into an Osteogenic Lineage

JOM ◽  
2021 ◽  
Author(s):  
Joseph A. Ayariga ◽  
Morgan Dean ◽  
Elijah Nyairo ◽  
Vinoy Thomas ◽  
Derrick Dean
2019 ◽  
Author(s):  
JiUn Lee ◽  
SooJung Chae ◽  
Hyeongjin Lee ◽  
GeunHyung Kim
Keyword(s):  

2016 ◽  
Vol 5 (01) ◽  
pp. 4723 ◽  
Author(s):  
Bhusnure O. G.* ◽  
Gholve V. S. ◽  
Sugave B. K. ◽  
Dongre R. C. ◽  
Gore S. A. ◽  
...  

Many researchers have attempted to use computer-aided design (C.A.D) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (D.D.S) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and D. D. Ss have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future. 3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fuelled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. Until recently, tablet designs had been restricted to the relatively small number of shapes that are easily achievable using traditional manufacturing methods. As 3D printing capabilities develop further, safety and regulatory concerns are addressed and the cost of the technology falls, contract manufacturers and pharmaceutical companies that experiment with these 3D printing innovations are likely to gain a competitive edge. This review compose the basics, types & techniques used, advantages and disadvantages of 3D printing


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Julia C. Chen ◽  
Mardonn Chua ◽  
Raymond B. Bellon ◽  
Christopher R. Jacobs

Osteogenic lineage commitment is often evaluated by analyzing gene expression. However, many genes are transiently expressed during differentiation. The availability of genes for expression is influenced by epigenetic state, which affects the heterochromatin structure. DNA methylation, a form of epigenetic regulation, is stable and heritable. Therefore, analyzing methylation status may be less temporally dependent and more informative for evaluating lineage commitment. Here we analyzed the effect of mechanical stimulation on osteogenic differentiation by applying fluid shear stress for 24 hr to osteocytes and then applying the osteocyte-conditioned medium (CM) to progenitor cells. We analyzed gene expression and changes in DNA methylation after 24 hr of exposure to the CM using quantitative real-time polymerase chain reaction and bisulfite sequencing. With fluid shear stress stimulation, methylation decreased for both adipogenic and osteogenic markers, which typically increases availability of genes for expression. After only 24 hr of exposure to CM, we also observed increases in expression of later osteogenic markers that are typically observed to increase after seven days or more with biochemical induction. However, we observed a decrease or no change in early osteogenic markers and decreases in adipogenic gene expression. Treatment of a demethylating agent produced an increase in all genes. The results indicate that fluid shear stress stimulation rapidly promotes the availability of genes for expression, but also specifically increases gene expression of later osteogenic markers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camila M. B. Machado ◽  
Nathalia B. D. Lima ◽  
Sóstenes L. S. Lins ◽  
Alfredo M. Simas

AbstractWe address the use of Euler's theorem and topological algorithms to design 18 polyhedral hydrocarbons of general formula CnHn that exist up to 28 vertexes containing four- and six-membered rings only; compounds we call “nuggets”. Subsequently, we evaluated their energies to verify the likelihood of their chemical existence. Among these compounds, 13 are novel systems, of which 3 exhibit chirality. Further, the ability of all nuggets to perform fusion reactions either through their square faces, or through their hexagonal faces was evaluated. Indeed, they are potentially able to form bottom-up derived molecular hyperstructures with great potential for several applications. By considering these fusion abilities, the growth of the nuggets into 1D, 2D, and 3D-scaffolds was studied. The results indicate that nugget24a (C24H24) is predicted to be capable of carrying out fusion reactions. From nugget24a, we then designed 1D, 2D, and 3D-scaffolds that are predicted to be formed by favorable fusion reactions. Finally, a 3D-scaffold generated from nugget24a exhibited potential to be employed as a voxel with a chemical structure remarkably similar to that of MOF ZIF-8. And, such a voxel, could in principle be employed to generate any 3D sculpture with nugget24a as its level of finest granularity.


Author(s):  
Adam C. Marsh ◽  
Nathan P. Mellott ◽  
Martin Crimp ◽  
Anthony Wren ◽  
Neal Hammer ◽  
...  

2021 ◽  
Author(s):  
Cinzia Clamor ◽  
Beatrice Cattoz ◽  
Peter Wright ◽  
Rachel K. O'Reilly ◽  
Andrew P Dove

Poly(ε-caprolactone) is a semi-crystalline biocompatible polymer with good mechanical properties. Its crystallinity also uniquely enables poly(ε-caprolactone) to be used in different applications, from the development of 3D scaffolds for tissue...


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hongyang Gao ◽  
Yang You ◽  
Guoping Zhang ◽  
Feng Zhao ◽  
Ziyi Sha ◽  
...  

To explore the feasibility of biodegradable fiber-reinforced 3D scaffolds with satisfactory mechanical properties for the repair of long-distance sciatic nerve defect in rabbits and effects of vascularized graft in early stage on the recovery of neurological function, Schwann cells and vascular endothelial cells were cocultured in the fiber-reinforced 3D scaffolds. Experiment group which used prevascularized nerve complex for the repair of sciatic nerve defect and control group which only cultured with Schwann cells were set. The animals in both groups underwent electromyography to show the status of the neurological function recovery at 4, 8, and 16 weeks after the surgery. Sciatic nerve regeneration and myelination were observed under the light microscope and electron microscope. Myelin sheath thickness, axonal diameter, and number of myelinated nerve fiber were quantitatively analyzed using image analysis system. The recovery of foot ulcer, the velocity of nerve conduction, the number of regenerating nerve fiber, and the recovery of ultrastructure were increased in the experimental group than those in the control group. Prevascularized tissue engineered fiber-reinforced 3D scaffolds for the repair of sciatic nerve defects in rabbits can effectively promote the recovery of neurological function.


Sign in / Sign up

Export Citation Format

Share Document