scholarly journals GC–MS Analysis, Molecular Docking and Pharmacokinetic Properties of Phytocompounds from Solanum torvum Unripe Fruits and Its Effect on Breast Cancer Target Protein

Author(s):  
R. Saravanan ◽  
K. Raja ◽  
D. Shanthi

Abstract This study was designed to identify phytocompounds from the aqueous extract of Solanum torvum unripe fruits using GC–MS analysis against breast cancer. For this, the identified phytocompounds were subjected to perform molecular docking studies to find the effects on breast cancer target protein. Pharmacokinetic properties were also tested for the identified phytocompounds to evaluate the ADMET properties. Molecular docking studies were done using docking software PyRx, and pharmacokinetic properties of phytocompounds were evaluated using SwissADME. From the results, ten best compounds were identified from GC–MS analysis against breast cancer target protein. Of which, three compounds showed very good binding affinity with breast cancer target protein. They are ergost-25-ene-3,6-dione,5,12-dihydroxy-,(5.alpha.,12.beta.) (− 7.3 kcal/mol), aspidospermidin-17-ol,1-acetyl-16-methoxy (− 6.7 kcal/mol) and 2-(3,4-dichlorophenyl)-4-[[2-[1-methyl-2-pyrrolidinyl]ethyl amino]-6-[trichloromethyl]-s-triazine (− 6.7 kcal/mol). Further, docking study was performed for the synthetic drug doxorubicin to compare the efficiency of phytocompounds. The binding affinity of ergost-25-ene-3,6-dione,5,12-dihydroxy-,(5.alpha.,12.beta.) is higher than the synthetic drug doxorubicin (− 7.2 kcal/mol), and the binding affinity of other compounds is also very near to the drug. Hence, the present study concludes that the phytocompounds from the aqueous extract of Solanum torvum unripe fruits have the potential ability to treat breast cancer.

Gene ◽  
2019 ◽  
Vol 701 ◽  
pp. 169-172 ◽  
Author(s):  
Vidya Mukund ◽  
Madhu Sudhana Saddala ◽  
Batoul Farran ◽  
Mastan Mannavarapu ◽  
Afroz Alam ◽  
...  

Author(s):  
Galla Rajitha ◽  
Murthi Vidya Rani ◽  
Umakanth Naik Vankadoth ◽  
Amineni Umamaheswari

Aims: The genomic and non-genomic actions of human estrogen receptor α (hERα) play a crucial role in breast epithelial cell proliferation and survival, as well as mammary tumorigenesis. hERα has been proved as a potential target for breast cancer therapy over the last 3 decades. Hence designing novel inhibitors targeting hERα can be a valuable approach in breast cancer therapy. Study Design:  In the present study, the goal is to identify novel hERα inhibitors through molecular docking, AI based virtual screening and interaction fingerprint analysis. Place and Duration of Study: Department of Bioinformatics, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India in between July 2021-sep 2021. Methodology: Molecular docking studies were performed using the human estrogen receptor alpha ligand-binding domain in complex with 4-hydroxytamoxifen (PDB: 3ERT) against existing compounds from literature. The best docked existing compound and co-crystal ligand were subjected to shape screening against 28 million compounds and resulted compounds constituted the hERα inhibitor dataset which was subjected to rigid receptor docking. Further, interaction fingerprint analysis was applied as complimentary method to docking for comparing the similarity of predicted binding poses of proposed leads with that of reference binding pose. Results: Co-crystal ligand (4-OHT) and E99 exhibited better binding affinity among existing ligand set. Rigid receptor docking studies resulted in four lead compounds possessing better docking scores than 4-OHT and E99. Moreover, leads showed favorable absorption, distribution, metabolism, excretion and toxicity properties within the range of 95% FDA approved drugs. Proposed leads showed interactions with binding site residues of hERα similar to that of 4-OHT with better binding affinity. The ability of obtained leads to retrieve actives was validated using receiver operative characteristic (ROC) curve. Conclusion: From above results, it has been observed that the proposed leads have potential to act as novel hERα inhibitors.


Author(s):  
Suman Rohilla ◽  
Ranju Bansal ◽  
Puneet Chauhan ◽  
Sonja Kachler ◽  
Karl-Norbert Klotz

Background: Adenosine receptors (AR) have emerged as competent and innovative nondopaminergic targets for the development of potential drug candidates and thus constitute an effective and safer treatment approach for Parkinson’s disease (PD). Xanthine derivatives are considered as potential candidates for the treatment Parkinson’s disease due to their potent A2A AR antagonistic properties. Objective: The objectives of the work are to study the impact of substituting N7-position of 8-m/pchloropropoxyphenylxanthine structure on in vitro binding affinity of compounds with various AR subtypes, in vivo antiparkinsonian activity and binding modes of newly synthesized xanthines with A2A AR in molecular docking studies. Methods: Several new 7-substituted 8-m/p-chloropropoxyphenylxanthine analogues have been prepared. Adenosine receptor binding assays were performed to study the binding interactions with various subtypes and perphenazine induced rat catatonia model was used for antiparkinsonian activity. Molecular docking studies were performed using Schrödinger molecular modeling interface. Results: 8-para-substituted xanthine 9b bearing an N7-propyl substituent displayed the highest affinity towards A2A AR (Ki = 0.75 µM) with moderate selectivity versus other AR subtypes. 7-Propargyl analogue 9d produced significantly longlasting antiparkinsonian effects and also produced potent and selective binding affinity towards A2A AR. In silico docking studies further highlighted the crucial structural components required to develop xanthine derived potential A2A AR ligands as antiparkinsonian agents. Conclusion: A new series of 7-substituted 8-m/p-chloropropoxyphenylxanthines having good affinity for A2A AR and potent antiparkinsonian activity has been developed.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Hadiza Abdulrahman Lawal ◽  
Adamu Uzairu ◽  
Sani Uba

Abstract Background Cancer of the breast is known to be among the top spreading diseases on the globe. Triple-negative breast cancer is painstaking the most destructive type of mammary tumor because it spreads faster to other parts of the body, with high chances of early relapse and mortality. This research would aim at utilizing computational methods like quantitative structure–activity relationship (QSAR), performing molecular docking studies and again to further design new effective molecules using the QSAR model parameters and to analyze the pharmacokinetics “drug-likeliness” properties of the new compounds before they could proceed to pre-clinical trials. Results The QSAR model of the derivatives was highly robust as it also conforms to the least minimum requirement for QSAR model from the statistical assessments of (R2) = 0.6715, (R2adj) = 0.61920, (Q2) = 0.5460 and (R2pred) of 0.5304, and the model parameters (AATS6i and VR1_Dze) were used in designing new derivative compounds with higher potency. The molecular docking studies between the derivative compounds and Maternal Embryonic Leucine Zipper Kinase (MELK) protein target revealed that ligand 2, 9 and 17 had the highest binding affinities of − 9.3, − 9.3 and − 8.9 kcal/mol which was found to be higher than the standard drug adriamycin with − 7.8 kcal/mol. The pharmacokinetics analysis carried out on the newly designed compounds revealed that all the compounds passed the drug-likeness test and also the Lipinski rule of five. Conclusions The results obtained from the QSAR mathematical model of parthenolide derivatives were used in designing new derivatives compounds that were more effective and potent. The molecular docking result of parthenolide derivatives showed that compounds 2, 9 and 17 had higher docking scores than the standard drug adriamycin. The compounds would serve as the most promising inhibitors (MELK). Furthermore, the pharmacokinetics analysis carried out on the newly designed compounds revealed that all the compounds passed the drug-likeness test (ADME and other physicochemical properties) and they also adhered to the Lipinski rule of five. This gives a great breakthrough in medicine in finding the cure to triple-negative breast cancer (MBA-MD-231 cell line).


2021 ◽  
Vol 22 (7) ◽  
pp. 3595
Author(s):  
Md Afjalus Afjalus Siraj ◽  
Md. Sajjadur Rahman ◽  
Ghee T. Tan ◽  
Veronique Seidel

A molecular docking approach was employed to evaluate the binding affinity of six triterpenes, namely epifriedelanol, friedelin, α-amyrin, α-amyrin acetate, β-amyrin acetate, and bauerenyl acetate, towards the cannabinoid type 1 receptor (CB1). Molecular docking studies showed that friedelin, α-amyrin, and epifriedelanol had the strongest binding affinity towards CB1. Molecular dynamics simulation studies revealed that friedelin and α-amyrin engaged in stable non-bonding interactions by binding to a pocket close to the active site on the surface of the CB1 target protein. The studied triterpenes showed a good capacity to penetrate the blood–brain barrier. These results help to provide some evidence to justify, at least in part, the previously reported antinociceptive and sedative properties of Vernonia patula.


Author(s):  
Prachi P. Parvatikar ◽  
Sumangala Patil ◽  
Joy Hoskeri ◽  
Sandeep Swargam ◽  
Raghvendra Kulkarni ◽  
...  

Aim: Screening and development of TG2 inhibitors as anti lung cancer agent. Background: Transglutaminase 2 (TG2) is multifunctional and ubiquitously expressed protein from transglutaminase family. It takes part in various cellular processes and plays an important role in the pathogenesis of autoimmune, neurodegerative and also cancer. Background: Transglutaminase 2 (TG2) is multifunctional and ubiquitously expressed protein from transglutaminase family. It takes part in various cellular processes and plays an important role in the pathogenesis of autoimmune, neurodegerative and also cancer. Objective : The of proposed study is to focused on screening of potent inhibitors of TG2 by in-silico method and synthesis its derivative as well as analysis of its activity by invitro approach. Material and Methods: Molecular docking studies have been carried on the different classes of TG2 inhibitors against the target protein. Nearly thirty TG2 inhibitors were selected from literature and docking was performed against transglutaminase 2. The computational ADME property screening was also carried out to check their pharmacokinetic properties. The compounds which exhibited positive ADME properties with good interaction with possessing least binding energy were further validated for their anti-lung cancer inhibition property against A549 cell lines by cytotoxicity studies. Results: The results of present study indicate that the docked complex formed by cystamine showed better binding affinity towards target protein so, this derivative of cystamine is formed using 2,5 dihydrobenzoic acid. Invitro results revealed that both molecule proved good cytotoxic agent against A549 lung cancer (875.10, 553.22 µg/ml) respectively. Further its activity should be validated on TG2 expressing lung cancer. Conclusion : Cystamine and its derivative can be act as potential therapeutic target for lung cancer but further its activity should be validated on TG2 expressing lung cancer.


Author(s):  
Punabaka Jyothi ◽  
Kuna Yellamma

Objective: Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms, is biochemically characterized by a significant decrease in the brain neurotransmitter Acetylcholine (ACh).Methods: In the present insilico study, six plant bioactive compounds namely Harmol, Vasicine, Harmaline, Harmine, Harmane and Harmalol (from P. Nigellastrum Bunge) were analyzed for their inhibitory role on AChE (Acetylcholinesterase) and BChE (Butyrylcholinesterase) activity by applying the molecular docking studies. Other parameters viz. determination of molecular interaction-based binding affinity values, protein-ligand interactions, Lipinski rule of five, functional properties and biological activities for the above compounds were also calculated by employing the appropriate bioinformatics tools.Results: The results of docking analysis clearly showed that Harmalol has highest binding affinity with AChE (-8.6 kcal/mole) and BChE (-8.0 kcal/mole) but it does not qualified the enzyme inhibitory activity, since it was exerted, and also has least percentage activity on AD and neurodegenerative disease. Whereas, the Harmine has been second qualified binding affinity (-8.4 kcal/mol) and first in other parameters when compared with Harmalol.Conclusion: Based on docking results and other parameters conducted, we are concluding that Harmine is the best compound for further studies to treat AD.Keywords: Alzheimer's disease (AD), Acetylcholinesterase, Butyrylcholinesterase, Lead Molecules


2018 ◽  
Vol 10 (5) ◽  
pp. 117
Author(s):  
Savita Mishra ◽  
Sandhya Hora ◽  
Vibha Shukla ◽  
Mukul Das ◽  
Harsha Kharkwal ◽  
...  

Objective: The aim of this study was to develop polymer coated sustained release tablet using sorafenib and silibinin combination for the treatment of hepatocellular carcinoma.Methods: The qualitative analysis such as weight variation, friability, hardness, interaction studies, disintegration and in vitro release were performed to validate formulated tablets. We have maintained the acceptable official limits for weight variation, friability, hardness and disintegration time according to prescribed pharmacopoeial recommendation. In vitro drug release studies were performed using USP-II (paddle type) dissolution apparatus. The MTT assay was performed for assessment of Cell viability of drug combination for tablet formulation. Molecular docking studies have been performed to determine the combinatorial mode of action for the tablet formulation.Results: Friability and weight variation were less than 1% for each formulation, which were within range of prescribed pharmacopoeial recommendation. The hardness of 20 tablets showed 5-6.5Kg/cm2 for all formulations 5-6.5Kg/cm2. The optimized formulation resulted in 98% drug release after 28 h. The present study reports the synergistic effects of drug combination to inhibit cell growth in HepG2 cell line. Molecular docking studies showed that sorafenib has high binding affinity for B-Raf vascular endothelial growth factor receptor β and protein kinase B. Silibinin showed binding affinity with MAP kinase-11, protein phosphatase 2 A and tankyrase.Conclusion: The present study reports for the first time a novel formulation for sustained release and reduced toxicity of sorafenib with enhanced inhibitory effect of the drug combination on cancerous hepatic cell line as well collaborative mechanism of action for the formulation.


Sign in / Sign up

Export Citation Format

Share Document