Selenide Chitosan Sulfate Improved the Hepatocyte Activity, Growth Performance, and Anti-oxidation Capacity by Activating the Thioredoxin Reductase of Chickens In Vitro and In Vivo

Author(s):  
Lele Hou ◽  
Huiling Qiu ◽  
Lianqin Zhu ◽  
Shansong Gao ◽  
Fu Chen
2020 ◽  
Author(s):  
Lele Hou ◽  
Huiling Qiu ◽  
Lianqin Zhu ◽  
Yufeng Huang ◽  
Shansong Gao ◽  
...  

Abstract Background: There are very few studies on the synergy effects of biological antioxidant activity on selenium (Se) and sulfate. This study evaluated the effect of selenide chitosan sulfate (LS-COS-Se) on the hepatocytes activity, growth performance, and anti-oxidation ability by activating the thioredoxin reductase (TrxR) system of specific pathogen free (SPF) chickens in vitro and in vivo. Methods: The hepatocytes were obtained in vitro and a total of 240 SPF White Leghorns chickens (7 days of age and body weight of 45.0 ± 2.0 g) were collected in vivo. The hepatocytes and chickens were randomly allocated into six treatment groups: control group; chitosan (COS) group; sodium selenite (Na2SeO3) group; selenide chitosan (COS-Se) group; chitosan sulfate (LS-COS) group; LS-COS-Se group. After 24 h, the culture medium and hepatocytes were collected and preserved respectively for analyzing the metabolic activity of hepatocytes. Gowth performance was evaluated and chickens were euthanized to obtain plasma and liver tissue to measure antioxidant associated parameter on days 14 and 28. Results: The experiment in vitro showed that the activities of TrxR, superoxide dismutase (SOD), catalase (CAT) in culture medium and the levels of thioredoxin reductase 1 (TrxR-1) and thioredoxin reductase 3 (TrxR-3) mRNA in hepatocytes in LS-COS-Se group were significantly higher (P < 0.05), but the content of malondialdehyde (MDA) and the activity of lactate dehydrogenase (LDH) significantly decreased (P < 0.05) than those in control, COS and LS-COS groups. Compared with Na2SeO3 and COS-Se groups, the levels of TrxR-1 and TrxR-3 mRNA in hepatocytes and the activity of SOD in culture medium significantly increased in LS-COS-Se group (P < 0.05). The experiment in vivo showed that the baby weight on 14d and 28d, the activities of TrxR, SOD and anti-superoxide anion radical (AntiO2-) in plasma and the levels of TrxR-1 and TrxR-3 mRNA in liver of dietary supplementation with LS-COS-Se were significantly higher than those in control, COS and LS-COS groups (P < 0.05). The activities of TrxR and SOD in plasma of dietary supplementation with LS-COS-Se were significantly higher than those of Na2SeO3 group and COS-Se group (P < 0.05). Conclusion: LS-COS-Se as potential antioxidant improved the hepatocytes activity, growth performance, and anti-oxidation ability by activating the TrxR system of SPF chickens in vitro and in vivo. The better biological activity of LS-COS-Se was mainly due to the synergistic effect of Se and sulfate on TrxR system.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1253
Author(s):  
Chae-Hyung Sun ◽  
Jae-Sung Lee ◽  
Jalil Ghassemi Nejad ◽  
Won-Seob Kim ◽  
Hong-Gu Lee

We evaluated the effects of a rumen-protected microencapsulated supplement from linseed oil (MO) on ruminal fluid, growth performance, meat quality, and fatty acid composition in Korean native steers. In an in vitro experiment, ruminal fluid was taken from two fistulated Holstein dairy cows. Different levels of MO (0%, 1%, 2%, 3%, and 4%) were added to the diet. In an in vivo experiment, eight steers (average body weight = 597.1 ± 50.26 kg; average age = 23.8 ± 0.12 months) were assigned to two dietary groups, no MO (control) and MO (3% MO supplementation on a DM basis), for 186 days. The in vitro study revealed that 3% MO is an optimal dose, as there were decreases in the neutral detergent fiber and acid detergent fiber digestibility at 48 h (p < 0.05). The in vivo study showed increases in the feed efficiency and average daily gain in the 3% MO group compared to the control group on days 1 to 90 (p < 0.05). Regarding meat quality, the shear force produced by the longissimus thoracis muscle in steers from the 3% MO group was lower than that produced by the control group (p < 0.05). Interestingly, in terms of the fatty acid profile, higher concentrations of C22:6n3 were demonstrated in the subcutaneous fat and higher concentrations of C18:3n3, C20:3n3, and C20:5n3 were found in the intramuscular fat from steers fed with 3% MO (p < 0.05). Our results indicate that supplementation with 3% MO supplements improves the growth performance and meat quality modulated by the omega-3 fatty acid content of meat in Korean native steers.


BioMetals ◽  
2010 ◽  
Vol 23 (6) ◽  
pp. 1171-1177 ◽  
Author(s):  
Caroline Wagner ◽  
Jéssie H. Sudati ◽  
Cristina W. Nogueira ◽  
João B. T. Rocha

2009 ◽  
Vol 192 (1) ◽  
pp. 336-345 ◽  
Author(s):  
Anand Ballal ◽  
Adhar C. Manna

ABSTRACT Thioredoxin reductase (encoded by trxB) protects Staphylococcus aureus against oxygen or disulfide stress and is indispensable for growth. Among the different sarA family mutants analyzed, transcription of trxB was markedly elevated in the sarA mutant under conditions of aerobic as well as microaerophilic growth, indicating that SarA acts as a negative regulator of trxB expression. Gel shift analysis showed that purified SarA protein binds directly to the trxB promoter region DNA in vitro. DNA binding of SarA was essential for repression of trxB transcription in vivo in S. aureus. Northern blot analysis and DNA binding studies of the purified wild-type SarA and the mutant SarAC9G with oxidizing agents indicated that oxidation of Cys-9 reduced the binding of SarA to the trxB promoter DNA. Oxidizing agents, in particular diamide, could further enhance transcription of the trxB gene in the sarA mutant, suggesting the presence of a SarA-independent mode of trxB induction. Analysis of two oxidative stress-responsive sarA regulatory target genes, trxB and sodM, with various mutant sarA constructs showed a differential ability of the SarA to regulate expression of the two above-mentioned genes in vivo. The overall data demonstrate the important role played by SarA in modulating expression of genes involved in oxidative stress resistance in S. aureus.


2017 ◽  
Vol 474 (8) ◽  
pp. 1347-1360 ◽  
Author(s):  
Keisuke Yoshida ◽  
Toru Hisabori

Thiol-based redox regulation is considered to support light-responsive control of various chloroplast functions. The redox cascade via ferredoxin–thioredoxin reductase (FTR)/thioredoxin (Trx) has been recognized as a key to transmitting reducing power; however, Arabidopsis thaliana genome sequencing has revealed that as many as five Trx subtypes encoded by a total of 10 nuclear genes are targeted to chloroplasts. Because each Trx isoform seems to have a distinct target selectivity, the electron distribution from FTR to multiple Trxs is thought to be the critical branch point for determining the consequence of chloroplast redox regulation. In the present study, we aimed to comprehensively characterize the kinetics of electron transfer from FTR to 10 Trx isoforms. We prepared the recombinant FTR protein from Arabidopsis in the heterodimeric form containing the Fe–S cluster. By reconstituting the FTR/Trx system in vitro, we showed that FTR prepared here was enzymatically active and suitable for uncovering biochemical features of chloroplast redox regulation. A series of redox state determinations using the thiol-modifying reagent, 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonate, indicated that all chloroplast Trx isoforms are commonly reduced by FTR; however, significantly different efficiencies were evident. These differences were apparently correlated with the distinct midpoint redox potentials among Trxs. Even when the experiments were performed under conditions of hypothetical in vivo stoichiometry of FTR and Trxs, a similar trend in distinguishable electron transfers was observed. These data highlight an aspect of highly organized circuits in the chloroplast redox regulation network.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Chuangyu Wen ◽  
Huihui Wang ◽  
Xiaobin Wu ◽  
Lu He ◽  
Qian Zhou ◽  
...  

Abstract Novel drugs are urgently needed for gastric cancer (GC) treatment. The thioredoxin-thioredoxin reductase (TRX-TRXR) system has been found to play a critical role in GC tumorigenesis and progression. Thus, agents that target the TRX-TRXR system may be highly efficacious as GC treatments. In this study, we showed that chaetocin, a natural product isolated from the Chaetomium species of fungi, inhibited proliferation, induced G2/M phase arrest and caspase-dependent apoptosis in both in vitro and in vivo models (cell xenografts and patient-derived xenografts) of GC. Chaetocin inactivated TRXR-1, resulting in the accumulation of reactive oxygen species (ROS) in GC cells; overexpression of TRX-1 as well as cotreatment of GC cells with the ROS scavenger N-acetyl-L-cysteine attenuated chaetocin-induced apoptosis; chaetocin-induced apoptosis was significantly increased when GC cells were cotreated with auranofin. Moreover, chaetocin was shown to inactivate the PI3K/AKT pathway by inducing ROS generation; AKT-1 overexpression also attenuated chaetocin-induced apoptosis. Taken together, these results reveal that chaetocin induces the excessive accumulation of ROS via inhibition of TRXR-1. This is followed by PI3K/AKT pathway inactivation, which ultimately inhibits proliferation and induces caspase-dependent apoptosis in GC cells. Chaetocin therefore may be a potential agent for GC treatment.


2020 ◽  
Vol 7 ◽  
Author(s):  
Erasmia Sidiropoulou ◽  
Ioannis Skoufos ◽  
Virginia Marugan-Hernandez ◽  
Ilias Giannenas ◽  
Eleftherios Bonos ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Stephanie B. Wall ◽  
Rachael Wood ◽  
Katelyn Dunigan ◽  
Qian Li ◽  
Rui Li ◽  
...  

Background. Aurothioglucose- (ATG-) mediated inhibition of thioredoxin reductase-1 (TXNRD1) improves alveolarization in experimental murine bronchopulmonary dysplasia (BPD). Glutathione (GSH) mediates susceptibility to neonatal and adult oxidative lung injury. We have previously shown that ATG attenuates hyperoxic lung injury and enhances glutathione- (GSH-) dependent antioxidant defenses in adult mice. Hypothesis. The present studies evaluated the effects of TXNRD1 inhibition on GSH-dependent antioxidant defenses in newborn mice in vivo and lung epithelia in vitro. Methods. Newborn mice received intraperitoneal ATG or saline prior to room air or 85% hyperoxia exposure. Glutamate-cysteine ligase (GCL) catalytic (Gclc) and modifier (Gclm) mRNA levels, total GSH levels, total GSH peroxidase (GPx) activity, and Gpx2 expression were determined in lung homogenates. In vitro, murine transformed club cells (mtCCs) were treated with the TXNRD1 inhibitor auranofin (AFN) or vehicle in the presence or absence of the GCL inhibitor buthionine sulfoximine (BSO). Results. In vivo, ATG enhanced hyperoxia-induced increases in Gclc mRNA levels, total GSH contents, and GPx activity. In vitro, AFN increased Gclm mRNA levels, intracellular and extracellular GSH levels, and GPx activity. BSO prevented AFN-induced increases in GSH levels. Conclusions. Our data are consistent with a model in which TXNRD1 inhibition augments hyperoxia-induced GSH-dependent antioxidant responses in neonatal mice. Discrepancies between in vivo and in vitro results highlight the need for methodologies that permit accurate assessments of the GSH system at the single-cell level.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Si Chen ◽  
Xiang Li ◽  
Xin Liu ◽  
Ning Wang ◽  
Qi An ◽  
...  

The flavonoids were extracted from alfalfa using ethanol assisted with ultrasonic extraction and purified by D101 macroporous resin column chromatography. The chemical composition and content of ethanol elution fractions (EEFs) were assessed by ultrahigh-performance liquid chromatography and hybrid quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) and aluminum nitrate-sodium nitrite-sodium hydroxide colorimetric method. The in vitro antioxidant activity of two EEFs was conducted by scavenging DPPH free radical, and the main antioxidants of 75% EEFs were screened using DPPH-UHPLC. Moreover, the in vivo antioxidant activity of 75% EEFs and the growth performance of broilers were studied. The results showed that the content of 30% and 75% EEFs was 26.20% and 62.57%. Fifteen compounds were identified from 75% EEFs, and five of them were reported in alfalfa for the first time. The scavenging activity of 75% and 30% EEFs (200 μg/mL) against DPPH was 95.51% and 78.85%. The peak area of 5,3′,4′-trihydroxyflavone and hyperoside was decreased by 82.69% and 76.04%, which exhibited strong scavenging capacities. The total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) level of three treated groups against the normal control group (NC) fed with basal diet significantly increased by 3.89-24.49%, 0.53-7.39%, and 0.79-11.79%, respectively. While the malondialdehyde (MDA) decreased by 0.47-18.27%. Compared with the NC, the feed to gain ratio (F : G) of three treated groups was lowered by 2.98-16.53% and survival rate of broilers significantly increased. Consequently, 75% EEFs extracted from alfalfa exhibited powerful antioxidant activities and might be a potential feed additive to poultry and livestock.


Sign in / Sign up

Export Citation Format

Share Document