Electroacupuncture Reduced Apoptosis of Hippocampal Neurons in Mice with Cerebral Infarction by Regulating the Notch3 Signaling Pathway

2019 ◽  
Vol 67 (3) ◽  
pp. 456-466
Author(s):  
Ruisi Tian ◽  
Shu Wang
2021 ◽  
Vol 11 (4) ◽  
pp. 679-683
Author(s):  
Yapeng Guo ◽  
Heng Xu ◽  
Xuyi Li ◽  
Zhiming Zhou

Cerebral infarction has seriously threatened human life and health. Parecoxib is the first nonsteroidal analgesic for surgical analgesia. However, its effect on orexin neurons during cerebral infarction treatment is unclear. In this study, a rat model of cerebral infarction was established by suture method. The experiment was assigned into sham operation group, cerebral infarction model group (MCAO), high and low dose group of parecoxib. Western blotting and immunofluorescence staining was used to evaluate the activity of orexin neurons. The infarct size was evaluated by TTC staining. The apoptosis of neurons in hypothalamus and hippocampus was determined by AV-PI staining. TTC staining suggested that parecoxib treatment significantly reduced cerebral infarct size, increased orexin neuronal activity, and decreased neuronal apoptosis in hypothalamus and hippocampus, which were significantly different from sham-operated groups. This study demonstrates that parecoxib has a protective effect on cerebral infarction rats, which can inhibit the apoptosis of hypothalamic and hippocampal neurons through the orexin neuron pathway. It provides a theoretical basis for the protective effect of parecoxib, indicating that it might be a new target for the treatment of cerebral infarction.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Sun ◽  
Sheng Wei ◽  
Xia Wei ◽  
Jieqiong Wang ◽  
Yuanyuan Zhang ◽  
...  

Objective.We discuss the influence of anger emotional stress upon VEGF/VEGFR2 and its induced PI3K/AKT/mTOR signal pathway.Methods.We created a rat model of induced anger (anger-out and anger-in) emotional response using social isolation and resident-intruder paradigms and assessed changes in hippocampus’ VEGF content, neuroplasticity, and the PI3K/AKT/mTOR signaling pathway.Results.The resident-intruder method successfully generated anger-out and anger-in models that differed significantly in composite aggression score, aggression incubation, open field behavior, sucrose preference, and weight gain. Anger emotional stress decreased synaptic connections and VEGFR2 expression. Anger emotional stress led to abnormal expression of VEGF/VEGFR2 mRNA and protein and disorderly expression of key factors in the PI3K/AKT/mTOR signal pathway. Fluoxetine administration ameliorated behavioral abnormalities and damage to hippocampal neurons caused by anger emotional stress, as well as abnormal expression of some proteins in VEGF/VEGFR2 and its induced PI3K/AKT/mTOR signal pathway.Conclusion.This research provides a detailed classification of anger emotion and verifies its influence upon VEGF and the VEGF-induced signaling pathway, thus providing circumstantial evidence of mechanisms by which anger emotion damages neurogenesis. As VEGFR2 can promote neurogenesis and vasculogenesis in the hippocampus and frontal lobe, these results suggest that anger emotional stress can result in decreased neurogenesis.


2021 ◽  
Vol 20 (11) ◽  
pp. 2261-2266
Author(s):  
Yanbin Hou ◽  
Zhongze Lou ◽  
Yunxin Ji ◽  
Liemin Ruan ◽  
He Gao

Purpose: To explore the effects of octreotide (OCT) on oxidative stress, inflammation and apoptosis in hypoxia/reoxygenation (H/R)-induced cerebral infarction.Methods: The in vitro model of cerebral infarction was established by treating N2A cells with hypoxia for 4 h and reoxygenation for 24 h. The viability of N2A cells was determined by CCK-8 assay. The cells were divided into 3 groups: control group, H/R group, and H/R+OCT group. The cells in H/R+OCT group were pretreated with OCT (60 ng/mL) before H/R treatment. The oxidative stress of N2A cells were assessed by determining the levels of superoxide dismutase (SOD), glutathione peroxidase (GSHPx), catalase (CAT), reactive oxygen species (ROS) and malondialdehyde (MDA). Inflammation of N2A cells was evaluated by evaluating the levels of TNF-α, IL-1β, IL-6, and IL-8, while the apoptosis of N2A cells was assessed by flow cytometry. Western blot analysis was used to determine the expression of Bcl-2, Bax, TLR4, MyD88, and NF-κB.Results: Octreotide treatment significantly reduced the level of oxidative stress. The inflammation of N2A cells caused by hypoxia/reoxygenation was inhibited by treatment with octreotide. Apoptosis of N2A cells was also inhibited by octreotide treatment. Hypoxia/reoxygenation activated TLR4/MyD88/NF-κB signaling pathway, while octreotide inhibits the activation of this pathway.Conclusion: The results reveal that octreotide inhibits hypoxia/reoxygenation-induced oxidative stress,as well as the inflammation, and apoptosis of N2A cells by inhibiting TLR4/MyD88/NF-κB signaling pathway. Thus, these findings may provide new insights into the treatment of cerebral infarction.


Sign in / Sign up

Export Citation Format

Share Document