Evaluation of genetic diversity of Portuguese Pinus sylvestris L. populations based on molecular data and inferences about the future use of this germplasm

2013 ◽  
Vol 93 (S2) ◽  
pp. 41-48 ◽  
Author(s):  
J. CIPRIANO ◽  
A. CARVALHO ◽  
C. FERNANDES ◽  
M. J. GASPAR ◽  
J. PIRES ◽  
...  
2015 ◽  
Vol 58 (1) ◽  
pp. 23-31 ◽  
Author(s):  
M. Mackowski ◽  
S. Mucha ◽  
G. Cholewinski ◽  
J. Cieslak

Abstract. Pedigree and molecular data were used to evaluate genetic diversity in the Polish populations of the Polish primitive horse (also known as Polish Konik) and Hucul breeds over the time period of 30 years (1980–2011). Based on genotypes in 12 microsatellite loci (for 3865 Polish primitive horses and 1627 Huculs), as well as on pedigree data derived from over 7000 individuals (both breeds), several indices describing structure of the analysed populations were estimated. For both analysed breeds, we observed an increasing trend of inbreeding since 1980 which seems to be much more stable (oscillating around 10 % in the Polish primitive horse and 5 % in Hucul) since the beginning of 2000s when they were included in conservation programs in Poland. We observed that generally, indices related to genetic diversity are higher in the Hucul breed. Our study indicated that genetic diversity in the Polish primitive horse and Hucul breeds in Poland is still relatively high and conservation programs should be continued to keep it on the "safe" level in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ming Sun ◽  
Zhixiao Dong ◽  
Jian Yang ◽  
Wendan Wu ◽  
Chenglin Zhang ◽  
...  

Abstract Background Prairie grass (Bromus catharticus) is a typical cool-season forage crop with high biomass production and fast growth rate during winter and spring. However, its genetic research and breeding has remained stagnant due to limited available genomic resources. The aim of this study was to generate large-scale genomic data using high-throughput transcriptome sequencing, and perform a preliminary validation of EST-SSR markers of B. catharticus. Results Eleven tissue samples including seeds, leaves, and stems were collected from a new high-yield strain of prairie grass BCS1103. A total of 257,773 unigenes were obtained, of which 193,082 (74.90%) were annotated. Comparison analysis between tissues identified 1803, 3030, and 1570 genes specifically and highly expressed in seed, leaf, and stem, respectively. A total of 37,288 EST-SSRs were identified from unigene sequences, and more than 80,000 primer pairs were designed. We synthesized 420 primer pairs and selected 52 ones with high polymorphisms to estimate genetic diversity and population structure in 24 B. catharticus accessions worldwide. Despite low diversity indicated by an average genetic distance of 0.364, the accessions from South America and Asia and wild accessions showed higher genetic diversity. Moreover, South American accessions showed a pure ancestry, while Asian accessions demonstrated mixed internal relationships, which indicated a different probability of gene flow. Phylogenetic analysis clustered the studied accessions into four clades, being consistent with phenotypic clustering results. Finally, Mantel analysis suggested the total phenotypic variation was mostly contributed by genetic component. Stem diameter, plant height, leaf width, and biomass yield were significantly correlated with genetic data (r > 0.6, P < 0.001), and might be used in the future selection and breeding. Conclusion A genomic resource was generated that could benefit genetic and taxonomic studies, as well as molecular breeding for B. catharticus and its relatives in the future.


1993 ◽  
pp. 227-238 ◽  
Author(s):  
S. J. Wiegrefe ◽  
R. P. Guries ◽  
E. B. Smalley ◽  
K. J. Sytsma

Author(s):  
Dainis Edgars Ruņģis ◽  
Baiba Krivmane

Abstract Acer platanoides L. (Norway maple) is the most widespread native maple species in Europe, with a distribution from south and central Europe to northern Europe and Scandinavia. Acer platanoides is widespread throughout the territory of Latvia, and is mainly found in mixed broadleaf and conifer stands. The genetic diversity and differentiation of Latvian A. platanoides populations was analysed. Sampled populations were located throughout the territory of Latvia, and were selected to represent a range of ecological conditions, with differing levels of anthropogenic impact. A total of 496 individuals from 21 populations were analysed with eight microsatellite markers, which were developed from related Acer species. The obtained molecular data revealed a moderate level of polymorphism, and the analysed Latvian A. platanoides populations were moderately differentiated. This study provides an initial assessment of the genetic diversity and differentiation of Latvian A. platanoides populations, and is also one of the first reports of the analysis of A. platanoides populations using microsatellite markers. The results can be utilised to define A. platanoides genetic resource stands to ensure conservation of a wide range of germplasm.


2015 ◽  
Vol 37 (2) ◽  
pp. 170 ◽  
Author(s):  
Emily J. Miller ◽  
Mark D. B. Eldridge ◽  
Keith Morris ◽  
Neil Thomas ◽  
Catherine A. Herbert

The endemic Australian greater bilby (Macrotis lagotis) is a vulnerable and iconic species. It has declined significantly due to habitat loss, as well as competition and predation from introduced species. Conservation measures include a National Recovery Plan that incorporates several captive breeding programs. Two of these programs were established within 12 months of one another (1997/98), with the same number and sex ratio of founding individuals, but executed different breeding strategies: (1) unmanipulated mating in semi–free range natural habitat versus (2) minimising mean kinship in large enclosures, with the supplementation of new individuals into both populations. This study evaluates the long-term genetic impact of these programs and examines the congruency between the pedigree studbook estimates of diversity and molecular data. Our data demonstrate that genetic diversity was maintained in both populations, with the supplementation of new individuals contributing to the gene pool. The studbook estimates of diversity and inbreeding are not consistent with the microsatellite data and should not solely be relied upon to evaluate the genetic health of captive populations. Our analyses suggest that captive breeding programs may not require costly and intensive management to effectively maintain long-term genetic diversity in a promiscuous species.


Zootaxa ◽  
2012 ◽  
Vol 3499 (1) ◽  
pp. 63
Author(s):  
M. ARUNACHALAM ◽  
M. RAJA ◽  
M. MURALIDHARAN ◽  
RICHARD L. MAYDEN

Very little is known about the diversity and systematics of the genus cypriniform genus Hypselobarbus. Currently, the genusincludes at least eleven species, all endemic to freshwater systems of Peninsular India. While these species are commonlyknown in India and are frequently used as a food source, little is known about the morphological diversity within and betweenspecies and nothing is known regarding intraspecific genetic diversity or species relationships. Herein, we examine the geneticdiversity in the genus for 11 mitochondrial genes for eleven populations representing nine of the known 11 species.Hypselobarbus is resolved as monophyletic, with the inclusion of P. carnaticus, and species relatioships are very stronglysupported. Because of the unambiguous relationships strongly supported B. carnaticus is allocated to Hypselobarbus. Thisresearch and ongoing morphological and molecular work with the genus supports the existence of additional new species inpeninsular India in need of further molecular and morphological study. Genetic diversity in the genus is high; for the twospecies wherein more than one sample, and the two of each are suspected to represent undescribed taxa, these populationsexhibited greater genetic divergence than that observed between any two of the other currently recognized species,corroborating our hypothesis based on morphological evidence. Clearly the genus warrants more thorough geographicsampling and examination of morphological and molecular data/analyses to reveal the natural lineages existing in this endemic and enigmatic genus.


2019 ◽  
Vol 42 ◽  
pp. e43426
Author(s):  
Luana Rainieri Massucato ◽  
Karina Kazue Nakamura ◽  
Paulo Mauricio Ruas ◽  
Douglas Mariani Zefa ◽  
Derly José Henrique da Silva ◽  
...  

The conservation of okra landraces [Abelmoschus esculentus (L.) Moench] in gene banks is essential for the success of their use in breeding programmes. This study evaluated the genetic diversity among okra landraces in Brazil based on morphoagronomic descriptors and AFLP markers. We studied 30 accessions of the vegetable gene bank of the Universidade Federal de Viçosa. To this end, 17 morphoagronomic descriptors and five combinations of AFLP primers were used. Genetic parameters were estimated for the quantitative traits and the accessions were grouped by Ward’s method, using the Gower’s and Jaccard’s distance measures, respectively, for the morphoagronomic and molecular data. Polymorphisms were observed for all qualitative traits, while the quantitative traits were significant by deviance analysis. The genetic parameters confirmed the existence of variability among accessions, and high accuracy and heritability indices were found for the traits related to fruit and plant height. Ward’s grouping showed no relationship between the clusters formed with the morphoagronomic and molecular data and the geographical origin of the accessions. No association between morphoagronomic descriptors and AFLP markers was observed. The lack of correlation suggests that both approaches of characterization are important to understand and differentiate the okra accessions.


2013 ◽  
Vol 11 (3) ◽  
pp. 225-233 ◽  
Author(s):  
Anuradha Upadhyay ◽  
Lalitkumar B. Aher ◽  
Manisha P. Shinde ◽  
Kavita Y. Mundankar ◽  
Anuj Datre ◽  
...  

Three hundred and seventeen grape accessions from the National Active Grape Germplasm Site in India were analysed with 25 microsatellite markers. A total of 411 alleles were detected, of which 42% were rare alleles. Unique alleles for 56 genotypes were also identified. The analysis of microsatellite data identified 63 duplicate accessions and only 254 accessions were unique genotypes. Several cases of misnomers, synonymy and homonymy were identified. Parental genotype for a few clonal selections was ascertained. Population structure analysis grouped 254 unique genotypes into four major clusters. The analysis also revealed the presence of admixtures with only 79% of pure ancestry. A core collection comprising 80 genotypes was identified, which represented all the alleles and genetic diversity. A user-friendly and interactive computer application software was developed for storage and the retrieval of molecular data. A molecular database for the 254 genotypes was created. This analysis will help in the rationalization and better management of germplasm. Information on genetic diversity and population structure will form the basis for varietal improvement programmes.


Heredity ◽  
2010 ◽  
Vol 106 (5) ◽  
pp. 775-787 ◽  
Author(s):  
W Wachowiak ◽  
M J Salmela ◽  
R A Ennos ◽  
G Iason ◽  
S Cavers

2007 ◽  
Vol 64 (3) ◽  
pp. 256-262 ◽  
Author(s):  
Alisson Fernando Chiorato ◽  
Sérgio Augusto Morais Carbonell ◽  
Luciana Lasry Benchimol ◽  
Marilia Barbosa Chiavegato ◽  
Luiz Antonio dos Santos Dias ◽  
...  

Germplasm banks store genotype samples, improved varieties, landraces and wild species, all generically denominated accessions. The importance of characterizing germplasm banks is based on the identification and knowledge of relevant traits for genetic improvement and ex situ germplasm conservation. Thus, the present study had as aim the evaluation of the genetic diversity among 220 accessions of a Brazilian common bean germplasm bank of the "Instituto Agronômico de Campinas" (IAC) by means of 23 morpho-agronomical descriptors and 19 RAPD loci. These accessions correspond to genotypes from the Andean and Middle American gene pool as well as from cultivars derived from common bean improvement programs. The Middle American accessions and the improved cultivars were clustered into one group, distinct from the one formed by the Andean accessions. In relation to the molecular data, 47% of the genetic similarity was detected among the Middle American accessions, and similar results were observed for the improved cultivars (50%). The Andean accessions revealed 60% of genetic similarity. The cluster constituted by the improved cultivars and the Middle American genotypes differed, basically, in tegument color. Both molecular and morpho-agronomical data sets were equally effective to quantify and organize the genetic diversity of common bean accessions. This information may be useful to direct crosses and for the proper organization of the IAC germplasm bank.


Sign in / Sign up

Export Citation Format

Share Document