scholarly journals 3D-Basin Modeling of the Changling Depression, NE China: Exploring Petroleum Evolution in Deep Tight Sandstone Reservoirs

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1043
Author(s):  
Jinliang Zhang ◽  
Jiaqi Guo ◽  
Yang Li ◽  
Zhongqiang Sun

The Changling Depression is the largest and most resource-abundant reservoir in the South Songliao Basin, NE China. The petroleum evolution rules in the Lower Cretaceous deep tight sandstone reservoir are unclear. In this study, 3D basin modeling is performed to analyze the large-scale petroleum stereoscopic migration and accumulation history. The Changling Depression has a complex fault system and multiple tectonic movements. The model is calibrated by the present formation temperatures and observed maturity (vitrinite reflectance). We consider (1) three main erosion episodes during the burial history, one during the Early Cretaceous and two during the Late Cretaceous; (2) the regional heat flow distribution throughout geological history, which was calibrated by abundant measurement data; and (3) a tight sandstone porosity model, which is calibrated by experimental petrophysical parameters. The maturity levels of the Lower Cretaceous source rocks are reconstructed and showed good gas-generation potential. The highest maturity regions are in the southwestern sag and northern sag. The peak hydrocarbon generation period contributed little to the reservoir because of a lack of seal rocks. Homogenization temperature analysis of inclusions indicated two sets of critical moments of gas accumulation. The hydrocarbon filling in the Haerjin and Shuangtuozi structures occurred between 80 Ma and 66 Ma, while the Dalaoyefu and Fulongquan structures experienced long-term hydrocarbon accumulation from 100 Ma to 67 Ma. The homogenization temperatures of the fluid inclusions may indicate a certain stage of reservoir formation and, in combination with the hydrocarbon-accumulation simulation, can distinguish leakage and recharging events.

2020 ◽  
Vol 206 ◽  
pp. 01017
Author(s):  
Yangbing Li ◽  
Weiqiang Hu ◽  
Xin Chen ◽  
Litao Ma ◽  
Cheng Liu ◽  
...  

Based on the comprehensive analysis of the characteristics of tight sandstone gas composition, carbon isotope, light hydrocarbons and source rocks in Linxing area of Ordos Basin, the reservoir-forming model of tight sandstone gas in this area is discussed. The study shows that methane is the main component of tight sandstone gas, with low contents of heavy hydrocarbons and non-hydrocarbons, mainly belonging to dry gas in the Upper Paleozoic in Linxing area. The values of δ13C1, δ13C2 and δ13C3 of natural gas are in the ranges of -45.6‰ ~ -32.9‰, -28.9‰ ~ -22.3‰ and -26.2‰~ -19.1‰, respectively. The carbon isotopic values of alkane gas show a general trend of positive carbon sequence. δ13C1 value is less than -30‰, with typical characteristics of organic genesis. There is a certain similarity in the composition characteristics of light hydrocarbons. The C7 series show the advantage of methylhexane, while the C5-7 series mainly shows the advantage of isoalkane. The tight sandstone gas in this area is mainly composed of mature coal-derived gas, containing a small amount of coal-derived gas and oil-type gas mixture. According to the mode of hydrocarbon generation, diffusion and migration of source rocks in Linxing area, the tight sandstone gas in the study area can be divided into three types of reservoir-forming assemblages: the upper reservoir type of the far-source type (upper Shihezi formation-shiqianfeng formation sandstone reservoir-forming away from source rocks), the upper reservoir type of the near-source type ( the Lower Shihezi formation sandstone reservoir-outside the source rock), and the self-storage type of the source type (Shanxi formation-Taiyuan formation source rock internal sand reservoir).


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Said Keshta ◽  
Farouk J. Metwalli ◽  
H. S. Al Arabi

Abu Madi/El Qar'a is a giant field located in the north eastern part of Nile Delta and is an important hydrocarbon province in Egypt, but the origin of hydrocarbons and their migration are not fully understood. In this paper, organic matter content, type, and maturity of source rocks have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. Modeling of the empirical data of source rock suggests that the Abu Madi formation entered the oil in the middle to upper Miocene, while the Sidi Salem formation entered the oil window in the lower Miocene. Charge risks increase in the deeper basin megasequences in which migration hydrocarbons must traverse the basin updip. The migration pathways were principally lateral ramps and faults which enabled migration into the shallower middle to upper Miocene reservoirs. Basin modeling that incorporated an analysis of the petroleum system in the Abu Madi/El Qar'a field can help guide the next exploration phase, while oil exploration is now focused along post-late Miocene migration paths. These results suggest that deeper sections may have reservoirs charged with significant unrealized gas potential.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jian Fu ◽  
Xuesong Li ◽  
Yonghe Sun ◽  
Qiuli Huo ◽  
Ting Gao ◽  
...  

In the evaluation of source rocks, the total organic carbon (TOC) is an important indicator to evaluate the hydrocarbon generation potential of source rocks. At present, the commonly used methods for assessing TOC include △ log R and neural network method. However, practice shows that these methods have limitations in the application of unconventional intervals of sand-shale interbeds, and they cannot sufficiently reflect the variation of TOC in the vertical direction. Therefore, a total organic carbon (TOC) evaluation model suitable for shale and tight sandstone was established based on the effective medium symmetrical conduction theory. The model consists of four components: nonconductive matrix particles, clay minerals, organic components (solid organic matter and hydrocarbons), and pore water. The conductive phase in the model includes clay minerals and pore water, and other components are treated as nonconductive phases. When describing the conductivity of rock, each component in the model is completely symmetrical, and anisotropic characteristics of each component are considered. The model parameters are determined through the optimization method, and the bisection iteration method is used to solve the model equation. Compared with the classic TOC calculation method, the new model can evaluate the abundance of organic matter in shale and tight sandstone, which provides a new option to assess the TOC of rocks based on logging methods.


2020 ◽  
Author(s):  
Qi-An Meng ◽  
Xue Wang ◽  
Qiu-Li Huo ◽  
Zhong-Liang Dong ◽  
Zhen Li ◽  
...  

Abstract Re–Os radiometric dating of crude oil can be used to constrain the timing of hydrocarbon generation, migration or charge. This approach has been successfully applied to marine petroleum systems; however, this study reports on its application to lacustrine-sourced natural crude oils. Oil samples from multiple wells producing from the Cretaceous Nantun Formation in the Wuerxun-Beier depression of the Hailar Basin in NE China were analysed. Subsets of the Re–Os data are compatible with a Cretaceous hydrocarbon generation event (131.1 ± 8.4 Ma) occurring within 10 Myr of deposition of the Nantun Formation source rocks. In addition, two younger age trends of 54 ± 12 Ma and 1.28 ± 0.69 Ma can be regressed from the Re–Os data, which may reflect the timing of subsequent hydrocarbon generation events. The Re–Os geochronometer, when combined with complementary age dating techniques, can provide direct temporal constraints on the evolution of petroleum system in a terrestrial basin.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 650 ◽  
Author(s):  
Jinliang Zhang ◽  
Jiaqi Guo ◽  
Jinshui Liu ◽  
Wenlong Shen ◽  
Na Li ◽  
...  

The Lishui Sag is located in the southeastern part of the Taibei Depression, in the East China Sea basin, where the sag is the major hydrocarbon accumulation zone. A three dimensional modelling approach was used to estimate the mass of petroleum generation and accumulated during the evolution of the basin. Calibration of the model, based on measured maturity (vitrinite reflectance) and borehole temperatures, took into consideration two main periods of erosion events: a late Cretaceous to early Paleocene event, and an Oligocene erosion event. The maturation histories of the main source rock formations were reconstructed and show that the peak maturities have been reached in the west central part of the basin. Our study included source rock analysis, measurement of fluid inclusion homogenization temperatures, and basin history modelling to define the source rock properties, the thermal evolution and hydrocarbon generation history, and possible hydrocarbon accumulation processes in the Lishui Sag. The study found that the main hydrocarbon source for the Lishui Sag are argillaceous source rocks in the Yueguifeng Formation. The hydrocarbon generation period lasted from 58 Ma to 32 Ma. The first period of hydrocarbon accumulation lasted from 51.8 Ma to 32 Ma, and the second period lasted from 23 Ma to the present. The accumulation zones mainly located in the structural high and lithologic-fault screened reservoir filling with the hydrocarbon migrated from the deep sag in the south west direction.


2016 ◽  
Vol 35 (1) ◽  
pp. 54-74 ◽  
Author(s):  
Xiaoping Liu ◽  
Zhijun Jin ◽  
Guoping Bai ◽  
Jie Liu ◽  
Ming Guan ◽  
...  

The Proterozoic–Lower Paleozoic marine facies successions are developed in more than 20 basins with low exploration degree in the world. Some large-scale carbonate oil and gas fields have been found in the oldest succession in the Tarim Basin, Ordos Basin, Sichuan Basin, Permian Basin, Williston Basin, Michigan Basin, East Siberia Basin, and the Oman Basin. In order to reveal the hydrocarbon enrichment roles in the oldest succession, basin formation and evolution, hydrocarbon accumulation elements, and processes in the eight major basins are studied comparatively. The Williston Basin and Michigan Basin remained as stable cratonic basins after formation in the early Paleozoic, while the others developed into superimposed basins undergone multistage tectonic movements. The eight basins were mainly carbonate deposits in the Proterozoic–early Paleozoic having different sizes, frequent uplift, and subsidence leading to several regional unconformities. The main source rock is shale with total organic carbon content of generally greater than 1% and type I/II organic matters. Various types of reservoirs, such as karst reservoir, dolomite reservoir, reef-beach body reservoirs are developed. The reservoir spaces are mainly intergranular pore, intercrystalline pore, dissolved pore, and fracture. The reservoirs are highly heterogeneous with physical property changing greatly and consist mainly of gypsum-salt and shale cap rocks. The trap types can be divided into structural, stratigraphic, lithological, and complex types. The oil and gas reservoir types are classified according to trap types where the structural reservoirs are mostly developed. Many sets of source rocks are developed in these basins and experienced multistage hydrocarbon generation and expulsion processes. In different basins, the hydrocarbon accumulation processes are different and can be classified into two types, one is the process through multistage hydrocarbon accumulation with multistage adjustment and the other is the process through early hydrocarbon accumulation and late preservation.


1994 ◽  
Vol 34 (1) ◽  
pp. 479 ◽  
Author(s):  
Mark A. Trupp ◽  
Keith W. Spence ◽  
Michael J. Gidding

The Torquay Sub-basin lies to the south of Port Phillip Bay in Victoria. It has two main tectonic elements; a Basin Deep area which is flanked to the southeast by the shallower Snail Terrace. It is bounded by the Otway Ranges to the northwest and shallow basement elsewhere. The stratigraphy of the area reflects the influence of two overlapping basins. The Lower Cretaceous section is equivalent to the Otway Group of the Otway Basin, whilst the Upper Cretaceous and Tertiary section is comparable with the Bass Basin stratigraphy.The Torquay Sub-basin apparently has all of the essential ingredients needed for successful hydrocarbon exploration. It has good reservoir-seal pairs, moderate structural deformation and probable source rocks in a deep kitchen. Four play types are recognised:Large Miocene age anticlines, similar to those in the Gippsland Basin, with an Eocene sandstone reservoir objective;The same reservoir in localised Oligocene anticlines associated with fault inversion;Possible Lower Cretaceous Eumeralla Formation sandstones in tilted fault blocks and faulted anticlines; andLower Cretaceous Crayfish Sub-group sandstones also in tilted fault block traps.Maturity modelling suggests that the Miocene anticlines post-date hydrocarbon generation. Poor reservoir potential and complex fault trap geometries downgrade the two Lower Cretaceous plays.The Oligocene play was tested by Wild Dog-1 which penetrated excellent Eocene age reservoir sands beneath a plastic shale seal, however, the well failed to encounter any hydrocarbons. Post-mortem analysis indicates the well tested a valid trap. The failure of the well is attributed to a lack of charge. Remaining exploration potential is limited to the deeper plays which have much greater risks associated with each play element.


1992 ◽  
Vol 32 (1) ◽  
pp. 231 ◽  
Author(s):  
A.M.G. Moore ◽  
J.B. Willcox ◽  
N.F. Exon ◽  
G.W. O'Brien

The continental margin of western Tasmania is underlain by the southern Otway Basin and the Sorell Basin. The latter lies mainly under the continental slope, but it includes four sub-basins (the King Island, Sandy Cape, Strahan and Port Davey sub-basins) underlying the continental shelf. In general, these depocentres are interpreted to have formed at the 'relieving bends' of a major left-lateral strike-slip fault system, associated with 'southern margin' extension and breakup (seafloor spreading). The sedimentary fill could have commenced in the Jurassic; however, the southernmost sub-basins (Strahan and Port Davey) may be Late Cretaceous and Paleocene, respectively.Maximum sediment thickness is about 4300 m in the southern Otway Basin, 3600 m in the King Island Sub-basin, 5100 m in the Sandy Cape Basin, 6500 m in the Strahan Sub-basin, and 3000 m in the Port Davey Sub-basin. Megasequences in the shelf basins are similar to those in the Otway Basin, and are generally separated by unconformities. There are Lower Cretaceous non-marine conglomerates, sandstones and mudstones, which probably include the undated red beds recovered in two wells, and Upper Cretaceous shallow marine to non-marine conglomerates, sandstones and mudstones. The Cainozoic sequence often commences with a basal conglomerate, and includes Paleocene to Lower Eocene shallow marine sandstones, mudstones and marl, Eocene shallow marine limestones, marls and sandstones, and Oligocene and younger shallow marine marls and limestones.The presence of active source rocks has been demonstrated by the occurrence of free oil near TD in the Cape Sorell-1 well (Strahan Sub-basin), and thermogenic gas from surficial sediments recovered from the upper continental slope and the Sandy Cape Sub-basin. Geohistory maturation modelling of wells and source rock 'kitchens' has shown that the best locations for liquid hydrocarbon entrapment in the southern Otway Basin are in structural positions marginward of the Prawn-1 well location. In such positions, basal Lower Cretaceous source rocks could charge overlying Pretty Hill Sandstone reservoirs. In the King Island Sub-Basin, the sediments encountered by the Clam-1 well are thermally immature, though hydrocarbons generated from within mature Lower Cretaceous rocks in adjacent depocentres could charge traps, providing that suitable migration pathways are present. Whilst no wells have been drilled in the Sandy Cape Sub-basin, basal Cretaceous potential source rocks are considered to have entered the oil window in the early Late Cretaceous, and are now capable of generating gas/condensate. Upper Cretaceous rocks appear to have entered the oil window in the Paleocene. In the Strahan Sub-Basin, mature Cretaceous sediments in the depocentres are available to traps, though considerable migration distances would be required.It is concluded that the west Tasmania margin, which has five strike-slip related depocentres and the potential to have generated and entrapped hydrocarbons, is worthy of further consideration by the exploration industry. The more prospective areas are the southern Otway Basin, and the Sandy Cape and Strahan sub-basins of the Sorell Basin.


Sign in / Sign up

Export Citation Format

Share Document