Quantitative precipitation estimation for an X-band dual-polarization radar in the complex mountainous terrain

2014 ◽  
Vol 18 (5) ◽  
pp. 1548-1553 ◽  
Author(s):  
Sanghun Lim ◽  
Dong-Ryul Lee ◽  
Rob Cifelli ◽  
Seok Hwan Hwang
2010 ◽  
Vol 27 (10) ◽  
pp. 1665-1676 ◽  
Author(s):  
Yanting Wang ◽  
V. Chandrasekar

Abstract This paper presents the sensing aspects and performance evaluation of the quantitative precipitation estimation (QPE) system in an X-band dual-polarization radar network developed by the Collaborative Adaptive Sensing of the Atmosphere (CASA) Engineering Research Center. CASA’s technology enables precipitation observation close to the ground and QPE is one of the important applications. With expanding urbanization all over the world, vulnerability to floods has increased from intense rainfall such as urban flash floods. The QPE products that are derived at high spatiotemporal resolution, which is enabled by the deployment of a dense radar network, have the potential to improve the prediction of flash-flooding threats when coupled with hydrological models. Derivation of QPE from radar observations is a challenging process, in which the use of dual-polarization radar variables is advantageous. At X band, the specific differential propagation phase (Kdp) between the orthogonal linear polarization states is particularly appealing. The Kdp field is robustly acquired using an adaptive estimation method, and a simple R(Kdp) relation is used to perform precipitation estimation in this X-band radar network. Radar observations and QPE from multiyear field experiments are used to demonstrate the performance of rainfall estimation from the single-parameter Kdp-based rainfall product. The operational feasibility of radar QPE using an X-band radar network is critically assessed.


2016 ◽  
Vol 55 (7) ◽  
pp. 1477-1495 ◽  
Author(s):  
Wei-Yu Chang ◽  
Jothiram Vivekanandan ◽  
Kyoko Ikeda ◽  
Pay-Liam Lin

AbstractThe accuracy of rain-rate estimation using polarimetric radar measurements has been improved as a result of better characterization of radar measurement quality and rain microphysics. In the literature, a variety of power-law relations between polarimetric radar measurements and rain rate are described because of the dynamic or varying nature of rain microphysics. A variational technique that concurrently takes into account radar observational error and dynamically varying rain microphysics is proposed in this study. Rain-rate estimation using the variational algorithm that uses event-based observational error and background rain climatological values is evaluated using observing system simulation experiments (OSSE), and its performance is demonstrated in the case of an epic Colorado flood event. The rain event occurred between 11 and 12 September 2013. The results from OSSE show that the variational algorithm with event-based observational error consistently estimates more accurate rain rate than does the “R(ZHH, ZDR)” power-law algorithm. On the contrary, the usage of ad hoc or improper observational error degrades the performance of the variational method. Furthermore, the variational algorithm is less sensitive to the observational error of differential reflectivity ZDR than is the R(ZHH, ZDR) algorithm. The variational quantitative precipitation estimation (QPE) retrieved more accurate rainfall estimation than did the power-law dual-polarization QPE in this particular event, despite the fact that both algorithms used the same dual-polarization radar measurements from the Next Generation Weather Radar (NEXRAD).


2017 ◽  
Vol 18 (4) ◽  
pp. 917-937 ◽  
Author(s):  
Haonan Chen ◽  
V. Chandrasekar ◽  
Renzo Bechini

Abstract Compared to traditional single-polarization radar, dual-polarization radar has a number of advantages for quantitative precipitation estimation because more information about the drop size distribution and hydrometeor type can be gleaned. In this paper, an improved dual-polarization rainfall methodology is proposed, which is driven by a region-based hydrometeor classification mechanism. The objective of this study is to incorporate the spatial coherence and self-aggregation of dual-polarization observables in hydrometeor classification and to produce robust rainfall estimates for operational applications. The S-band dual-polarization data collected from the NASA Polarimetric (NPOL) radar during the GPM Iowa Flood Studies (IFloodS) ground validation field campaign are used to demonstrate and evaluate the proposed rainfall algorithm. Results show that the improved rainfall method provides better performance than a few single- and dual-polarization algorithms in previous studies. This paper also investigates the impact of radar beam broadening on various rainfall algorithms. It is found that the radar-based rainfall products are less correlated with ground disdrometer measurements as the distance from the radar increases.


2021 ◽  
Author(s):  
Anil Kumar Khanal ◽  
Guy Delrieu ◽  
Brice Boudevillain ◽  
Frédéric Cazenave ◽  
Nan Yu

<p>The RadAlp experiment at the Grenoble region in the French Alps aims to advance the radar remote sensing techniques of precipitation in high mountain regions. Since 2016, two dual-polarimetric X-band radars, one on top of Mt Moucherotte (1901 m asl) and another in the Grenoble valley (220 m asl) are operated by Metro France and IGE respectively. High spatio-temporal variability of precipitation (e.g. intensity and phase) in the complex terrain requires high-resolution observations. X-band radar provides high spatial and temporal resolution imagery which makes it ideal for use in complex terrain but also comes with significant attenuation problems during heavy precipitation and in the melting layer (ML). The development of polarimetric techniques, especially differential phase shift (ϕDP) has helped to mitigate the power signal attenuation problem to a certain extent. The ϕDP is immune to attenuation due to rainfall, radar calibration errors and partial beam blockage, making it an attractive parameter for quantitative precipitation estimation (QPE) through attenuation correction of the reflectivity (Z). The ϕDP, however, is quite noisy and requires regularization. An iterative algorithm based on maximum allowed step sizes provides a robust solution in ϕDP regularization. In this study, we aim to understand the relationship between differential phase shift (ϕDP) and path integrated attenuation (PIA) at X-band. This relationship is crucial for quantitative precipitation estimation (QPE) using polarimetric techniques. Furthermore, this relationship is still poorly documented within the melting layer due to the complexity of the hydrometeors' distributions in terms of phase, size, shape and density. We use the mountain reference technique (MRT) for direct PIA estimations associated with the decrease in returns from mountain targets during precipitation events as compared to dry periods. The quasi-vertical profiles from the valley-based radar (XPORT) help to identify, characterize and follow the evolution of the melting layer. For the mountaintop radar (MOUC) stratiform events (59 days between Nov 2016 to Dec 2019) where the O° elevation angle beam passes through the melting layer are considered.  The PIA/ ϕDP ratios at different strata of the ML, snow-ML interface and ML-rain interface are studied. Initial results show that the PIA/ ϕDP ratio peaks at the levels of cross-correlation coefficient (ρHV) minima, remains strong in the upper part of the ML and tends to 0 towards the top of ML. Additionally, its value in rain (0.32 dB per deg) below the ML matches closely with the specific attenuation vs specific phase (k-KDP) relationship (0.29) derived from the disdrometer at ground level.  Its value increases steadily in the lower part of ML (peaks around 0.70 dB per deg), remains strong in the upper part of ML (0.5 - 0.6 dB per degree), and decreases rapidly to 0.13 dB per degree above the ML (in snow).</p>


2019 ◽  
Vol 11 (12) ◽  
pp. 1479 ◽  
Author(s):  
Ji ◽  
Chen ◽  
Li ◽  
Chen ◽  
Xiao ◽  
...  

Fourteen-month precipitation measurements from a second-generation PARSIVEL disdrometer deployed in Beijing, northern China, were analyzed to investigate the microphysical structure of raindrop size distribution and its implications on polarimetric radar applications. Rainfall types are classified and analyzed in the domain of median volume diameter D0 and the normalized intercept parameter Nw. The separation line between convective and stratiform rain is almost equivalent to rain rate at 8.6 mm h–1 and radar reflectivity at 36.8 dBZ. Convective rain in Beijing shows distinct seasonal variations in log10Nw–D0 domain. X-band dual-polarization variables are simulated using the T-matrix method to derive radar-based quantitative precipitation estimation (QPE) estimators, and rainfall products at hourly scale are evaluated for four radar QPE estimators using collocated but independent rain gauge observations. This study also combines the advantages of individual estimators based on the thresholds on polarimetric variables. Results show that the blended QPE estimator has better performance than others. The rainfall microphysical analysis presented in this study is expected to facilitate the development of a high-resolution X-band radar network for urban QPE applications.


2017 ◽  
Vol 18 (12) ◽  
pp. 3199-3215 ◽  
Author(s):  
Leonardo Porcacchia ◽  
P. E. Kirstetter ◽  
J. J. Gourley ◽  
V. Maggioni ◽  
B. L. Cheong ◽  
...  

Abstract Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to natural hazards. It is generally difficult to obtain reliable precipitation information over complex areas because of the scarce coverage of ground observations, the limited coverage from operational radar networks, and the high elevation of the study sites. Warm-rain processes have been observed in several flash flood events in complex terrain regions. While they lead to high rainfall rates from precipitation growth due to collision–coalescence of droplets in the cloud liquid layer, their characteristics are often difficult to identify. X-band mobile dual-polarization radars located in complex terrain areas provide fundamental information at high-resolution and at low atmospheric levels. This study analyzes a dataset collected in North Carolina during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEx) field campaign over a mountainous basin where the NOAA/National Severe Storm Laboratory’s X-band polarimetric radar (NOXP) was deployed. Polarimetric variables are used to isolate collision–coalescence microphysical processes. This work lays the basis for classification algorithms able to identify coalescence-dominant precipitation by merging the information coming from polarimetric radar measurements. The sensitivity of the proposed classification scheme is tested with different rainfall-rate retrieval algorithms and compared to rain gauge observations. Results show the inadequacy of rainfall estimates when coalescence identification is not taken into account. This work highlights the necessity of a correct classification of collision–coalescence processes, which can lead to improvements in quantitative precipitation estimation. Future studies will aim at generalizing this scheme by making use of spaceborne radar data.


2021 ◽  
Vol 13 (16) ◽  
pp. 3157
Author(s):  
Yonghua Zhang ◽  
Shuoben Bi ◽  
Liping Liu ◽  
Haonan Chen ◽  
Yi Zhang ◽  
...  

Heavy rain associated with landfalling typhoons often leads to disasters in South China, which can be reduced by improving the accuracy of radar quantitative precipitation estimation (QPE). At present, raindrop size distribution (DSD)-based nonlinear fitting (QPEDSD) and traditional neural networks are the main radar QPE algorithms. The former is not sufficient to represent the spatiotemporal variability of DSDs through the generalized Z–R or polarimetric radar rainfall relations that are established using statistical methods since such parametric methods do not consider the spatial distribution of radar observables, and the latter is limited by the number of network layers and availability of data for training the model. In this paper, we propose an alternative approach to dual-polarization radar QPE based on deep learning (QPENet). Three datasets of “dual-polarization radar observations—surface rainfall (DPO—SR)” were constructed using radar observations and corresponding measurements from automatic weather stations (AWS) and used for QPENetV1, QPENetV2, and QPENetV3. In particular, 13 × 13, 25 × 25, and 41 × 41 radar range bins surrounding each AWS location were used in constructing the datasets for QPENetV1, QPENetV2, and QPENetV3, respectively. For training the QPENet models, the radar data and AWS measurements from eleven landfalling typhoons in South China during 2017–2019 were used. For demonstration, an independent typhoon event was randomly selected (i.e., Merbok) to implement the three trained models to produce rainfall estimates. The evaluation results and comparison with traditional QPEDSD algorithms show that the QPENet model has a better performance than the traditional parametric relations. Only when the hourly rainfall intensity is less than 5 mm (R < 5 mm·h−1), the QPEDSD model shows a comparable performance to QPENet. Comparing the three versions of the QPENet model, QPENetV2 has the best overall performance. Only when the hourly rainfall intensity is less than 5 mm (R < 5 mm·h−1), QPENetV3 performs the best.


Sign in / Sign up

Export Citation Format

Share Document