Effect of Viscoelastic Deformation for CA Mortar on Mechanical Responses of Track Structures

Author(s):  
Juanjuan Ren ◽  
Wei Du ◽  
Shijie Deng ◽  
Yuanjie Xiao ◽  
Haolan Li ◽  
...  
2020 ◽  
Vol 10 (8) ◽  
pp. 2860
Author(s):  
Xiao Li ◽  
Zhiwu Yu ◽  
Peng Liu ◽  
Zhi Shan ◽  
Zilong Meng

Experimental investigation on cement emulsified asphalt mortar (CA mortar) under uniaxial monotonic compression by taking into account the stochastic properties were investigated. An analytical constitutive model based on the statistic damage approach capable of mimicking the stochastic mechanical responses of CA mortar under uniaxial compression was proposed. The comparison between the experimental results and the predictions demonstrated that the proposed model was able to characterize the salient features for CA mortar under uniaxial monotonic compression. Furthermore, the compressive stochastic evolution (SE) of CA mortar tested in this work and comparative analyses among typical China Railway Track System-I (CRTS-I) type CA mortar and concrete in several aspects were examined and performed; it was revealed that the Lognormal distribution density function can well represent the damage probability density for CA mortar, and its stochastic constitutive relationship can be reflected by a media process of transition from microscale to macroscale.


2021 ◽  
pp. 107754632110276
Author(s):  
Jun-Jie Li ◽  
Shuo-Feng Chiu ◽  
Sheng D Chao

We have developed a general method, dubbed the split beam method, to solve Euler–Bernoulli equations for cantilever beams under multiple loading conditions. This kind of problem is, in general, a difficult inhomogeneous eigenvalue problem. The new idea is to split the original beam into two (or more) effective beams, each of which corresponds to one specific load and bears its own Young’s modulus. The mode shape of the original beam can be obtained by linearly superposing those of the effective beams. We apply the split beam method to simulating mechanical responses of an atomic force microscope probe in the “dynamical” operation mode, under which there are a stabilizing force at the positioner and a point-contact force at the tip. Compared with traditional analytical or numerical methods, the split beam method uses only a few number of basis functions from each effective beam, so a very fast convergence rate is observed in solving both the resonance frequencies and the mode shapes at the same time. Moreover, by examining the superposition coefficients, the split beam method provides a physical insight into the relative contribution of an individual load on the beam.


Author(s):  
A. Hammad ◽  
T. D. Swinburne ◽  
H. Hasan ◽  
S. Del Rosso ◽  
L. Iannucci ◽  
...  

Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel–Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation–dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 446
Author(s):  
Ioannis Spanos ◽  
Zacharias Vangelatos ◽  
Costas Grigoropoulos ◽  
Maria Farsari

The need for control of the elastic properties of architected materials has been accentuated due to the advances in modelling and characterization. Among the plethora of unconventional mechanical responses, controlled anisotropy and auxeticity have been promulgated as a new avenue in bioengineering applications. This paper aims to delineate the mechanical performance of characteristic auxetic and anisotropic designs fabricated by multiphoton lithography. Through finite element analysis the distinct responses of representative topologies are conveyed. In addition, nanoindentation experiments observed in-situ through scanning electron microscopy enable the validation of the modeling and the observation of the anisotropic or auxetic phenomena. Our results herald how these categories of architected materials can be investigated at the microscale.


Sign in / Sign up

Export Citation Format

Share Document