Effects of Fiber Contents on Wear Resistance of Salacca zalacca Frond Fiber Reinforced Phenolic

2019 ◽  
Vol 948 ◽  
pp. 181-185
Author(s):  
Heru Santoso Budi Rochardjo ◽  
Muhammad Ridlo

In the last decades, natural fiber composites have received much attention as important structural materials for lightweight components in automotive, and space industries because of low density, high specific strength, and environment-friendly materials. Some natural fibers, however, still not applied in more useful structure, one of which is the frond fiber of snake fruit (salacca zalacca). This fiber is usually just burned or fired as the agricultural waste. The present paper presents the result of the development of frond salacca fiber as the wear component of natural fiber reinforced phenolic. In this composite, the fiber and the phenolic are in the form of powder. The variation of fiber volume fraction was used as the main factor in the tribology characteristics of the composite. The specific wear and also the hardness is then compared to that of the existed commercially available motorbike brake pad as a comparison.

2020 ◽  
Vol 8 (6) ◽  
pp. 5393-5397

In the present era, Natural fibers are favored for the formation of composites due to their low density, high strength, biodegradability, easy production, low carbon foot, environment friendly nature in comparison of synthetic fibers. This Paper deals with NFRC made from natural fibers obtained from the plants of arid region of Western Rajasthan on which a few researchers are focusing. This paper discuss on the extraction process of fiber from the ber’s stems, manufacturing of composites by using epoxy resin & ber’s fibers then testing of its mechanical properties e.g. tensile strength, young modulus, yield strength , and percentage elongation. Six Sample were made having weight ratio - 0.1, 0.2, 0.3, 0.4, 0.45, & 0. 6. Dog bone samples were prepared according to the ASTM D638 (Type IV) standard. Tensile strength varies from 12.19 MPa to 25 MPa, while young modulus varies from 1.4GPa to 2.9GPa for different weight ratios. Yield strength varies from 10.77 MPa to 21.16 MPa. Percentage of Elongation varies from 1 to 3%. These results shows that ber’s stems can be used for fiber extraction to manufacture composites materials & for better mechanical properties minimum fiber volume fraction percentage is 13% and maximum fiber fraction is 31%.This data can be used further when optimum value of fiber volume fraction is required to form composites from ber’s fibers.


Author(s):  
Yibin Xue ◽  
Scott A. Fletcher ◽  
Kunpeng Wang

Micromechanics-based simulations were conducted to evaluate the linear and nonlinear properties of natural fiber-reinforced plastic composites with fibers in various waving and kinked forms. Natural fibers, such as woodfibers and fibers from plants, have length-aspect ratio of longitudinal and transverse at or greater than 20. At such high aspect ratio, the natural fiber normally presents in waving, bending, twisting, kinking morphology in the composites. This paper presents a series of micromechanical simulations to predict the elastic and nonlinear elastic behaviors of natural fiber-reinforced plastic composites (NF-PCs) considering the effects of fiber kinking, waving, and arrangements on the stress-strain relationship. A set of three-dimensional unit cells (UC) were developed to mimic various fiber morphologies with the fiber volume fraction of fifty percent, a typical fiber volume fraction for the natural fiber plastic composites. Periodic displacement boundary conditions were implemented on the UC to simulate a unidirectional strain field. The homogenized anisotropic stress-strain relations for NF-PCs were predicted by postulating nonlinear behavior of plastic matrix and perfect and imperfect interface between the NF and the matrix. Stress distributions in the natural fiber were presented as a function of the fiber aspect ratio and the fiber waving and kinking forms. Even though, the high fiber aspect ratio provides relatively high elastic modulus and nonlinear hardening, it also induces high stresses or stress concentration in the fiber that may result in earlier failure of the fiber when the composites undergone a relatively large deformations (> 4%).


2016 ◽  
Vol 24 (7) ◽  
pp. 555-566 ◽  
Author(s):  
N. Venkatachalam ◽  
P. Navaneethakrishnan ◽  
R. Rajsekar ◽  
S. Shankar

India as a tropical agricultural country has great potential to develop and use fiber derived from agricultural waste. Natural fibers are an important by-product of extraction process and they can be used as reinforcement in composite products. Composites are developed with unsaturated polyester resin as the matrix with natural fiber as the reinforcement. The results show decreased strength and modulus with increasing the fiber volume fraction. This indicates ineffective stress transfer between the fiber and matrix due to lower adhesion. It is necessary to bring a hydrophobic nature to the fibers by suitable chemical treatments in order to develop composites with improved mechanical properties. In these review papers, different types of natural fibers are subjected to a variety of physical and chemical treatments. The types of treatments studied in these papers include Physical treatments such as beating and heating, and chemical treatments like alkalization, silane, acetylation and benzoylation. The effects of these treatments on mechanical properties of the composites are analyzed. Fractures are analyzed by using the scanning electron microscopy (SEM). Analysis by FTIR and DMA showed that physico-chemical changes of surfaces of treated natural fibers. In general, treatments to the fibers can significantly improve adhesion and reduce water absorption, thereby improving mechanical properties of the composites. The purpose of this review paper is to summarize the research work done on various pretreatments in the preparation of natural fiber reinforced composites and to highlight the potential use of natural fiber reinforced polymer composites in industry and its potential to replace the synthetic fiber composite and conventional materials in the future.


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


2006 ◽  
Vol 33 (6) ◽  
pp. 726-734 ◽  
Author(s):  
Fariborz Majdzadeh ◽  
Sayed Mohamad Soleimani ◽  
Nemkumar Banthia

The purpose of this study was to investigate the influence of fiber reinforcement on the shear capacity of reinforced concrete (RC) beams. Both steel and synthetic fibers at variable volume fractions were investigated. Two series of tests were performed: structural tests, where RC beams were tested to failure under an applied four-point load; and materials tests, where companion fiber-reinforced concrete (FRC) prisms were tested under direct shear to obtain material properties such as shear strength and shear toughness. FRC test results indicated an almost linear increase in the shear strength of concrete with an increase in the fiber volume fraction. Fiber reinforcement enhanced the shear load capacity and shear deformation capacity of RC beams, but 1% fiber volume fraction was seen as optimal; no benefits were noted when the fiber volume fraction was increased beyond 1%. Finally, an equation is proposed to predict the shear capacity of RC beams.Key words: shear strength, fiber-reinforced concrete, RC beam, stirrups, energy absorption capacity, steel fiber, synthetic fiber.


2018 ◽  
Vol 52 (24) ◽  
pp. 3289-3297 ◽  
Author(s):  
Benoît Cosson

Tracking the variability of natural fiber-based fabrics properties, such as local areal weight, fiber volume fraction, and therefore permeability, is crucial to optimize the parts processing of the bio-composites. This paper aims at developing a cost-effective and efficient optical method in order to predict the permeability of flax fabrics used in liquid composite molding processes. This method using an LCD monitor as light source and a reflex camera as a measurement device is based on light transmission measurement through fabric thickness. The raw data given by the camera are gray scale maps, transformed into areal weight maps. FEM software based on levelset method is finally used to highlight the influence of the local variability of the fiber volume fraction, and of the related fabrics porosity and permeability on the mold filling time. The proposed method can be directly implemented on the manufacturing line of the composites. It can be used to optimize, part-to-part, the resin consumption by predicting the resin flow through perform. Interestingly, this novel optical method is auto-calibrated and does not depend on picture resolution.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3335 ◽  
Author(s):  
Seungwon Kim ◽  
Dong Joo Kim ◽  
Sung-Wook Kim ◽  
Cheolwoo Park

Concrete has high compressive strength, but low tensile strength, bending strength, toughness, low resistance to cracking, and brittle fracture characteristics. To overcome these problems, fiber-reinforced concrete, in which the strength of concrete is improved by inserting fibers, is being used. Recently, high-performance fiber-reinforced cementitious composites (HPFRCCs) have been extensively researched. The disadvantages of conventional concrete such as low tensile stress, strain capacity, and energy absorption capacity, have been overcome using HPFRCCs, but they have a weakness in that the fiber reinforcement has only 2% fiber volume fraction. In this study, slurry infiltrated fiber reinforced cementitious composites (SIFRCCs), which can maximize the fiber volume fraction (up to 8%), was developed, and an experimental study on the tensile behavior of SIFRCCs with varying fiber volume fractions (4%, 5%, and 6%) was carried out through direct tensile tests. The results showed that the specimen with high fiber volume fraction exhibited high direct tensile strength and improved brittleness. As per the results, the direct tensile strength is approximately 15.5 MPa, and the energy absorption capacity was excellent. Furthermore, the bridging effect of steel fibers induced strain hardening behavior and multiple cracks, which increased the direct tensile strength and energy absorption capacity.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5326
Author(s):  
María Dolores Navarro-Mas ◽  
María Desamparados Meseguer ◽  
Joaquín Lluch-Cerezo ◽  
Juan Antonio García-Manrique

Delamination is one of the main problems that occur when machining fiber-reinforced composite materials. In this work, Types I and II of delamination are studied separately in edge trimming of basalt fiber reinforced plastic (BFRP). For this purpose, one-dimensional and area delamination parameters are defined. One-dimensional parameters (Wa and Wb) allow to know average fibers length while the analysis of area delamination parameters (Sd) allow to evaluate delamination density. To study delamination, different tests are carried out modifying cutting parameters (cutting speed, feed per tooth and depth of cut) and material characteristics (fiber volume fraction and fiber orientation). Laminates with a lower fiber volume fraction do not present delamination. Attending to one-dimensional parameters it can be concluded that Type II delamination is more important than Type I and that a high depth of cut generates higher values of delamination parameters. An analysis of variance (ANOVA) is performed to study area parameters. Although delamination has a random nature, for each depth of cut, more influence variables in area delamination are firstly, feed per tooth and secondly, cutting speed.


Sign in / Sign up

Export Citation Format

Share Document