scholarly journals Consequences of large strain anisotropic work-hardening in cold forging

Author(s):  
Felix Kolpak ◽  
Oliver Hering ◽  
A. Erman Tekkaya

AbstractThe influence of anisotropic work-hardening on the component properties and process forces in cold forging is investigated. The focus is on the material behaviour exhibited after strain path reversals. The work-hardening of three steels is characterized for large monotonic strains (equivalent strains up to 1.7) and subsequent strain path reversals (accumulated strains up to 2.5). Tensile tests on specimens extracted from rods forward extruded at room temperature reveal an almost linear work-hardening for all investigated steels. The application of compressive tests on extruded material gives insights into the non-monotonic work-hardening behaviour. All previously reported anisotropic work-hardening phenomena such as the Bauschinger effect, work-hardening stagnation and permanent softening are present for all investigated steels and intensify with the pre-strain. Experimental results of 16MnCrS5 were utilized to select constitutive models of increasing complexity regarding their capability to capture anisotropic work-hardening. The best fit between experimental and numerical data was obtained by implementation of a modified Yoshida-Uemori model, which is able to capture all observed anisotropic work-hardening phenomena. The constitutive models were applied in simulations of single- and multi-stage cold forming processes, revealing the significant effect of anisotropic hardening on the predicted component properties and process forces, originating in the process-intrinsic strain path reversals as well as in strain path reversals between subsequent forming stages. Selected results were validated experimentally.

2014 ◽  
Vol 794-796 ◽  
pp. 284-289 ◽  
Author(s):  
Odd Sture Hopperstad ◽  
Ida Westermann ◽  
Ketill Olav Pedersen ◽  
Trond Furu ◽  
Tore Børvik

Tensile tests on smooth and notched axisymmetric specimens were carried out to determine the large strain work-hardening curves and the ductile fracture characteristics of an AA6060 aluminium alloy for three different processing routes. The alloy was processed in three subsequent steps: 1) casting and homogenization, 2) extrusion, and 3) cold rolling and heat treatment to obtain a recrystallized grain structure. After each processing step, the material was tested after natural ageing for more than one week. A laser-based extensometer was used to continuously measure the average true strains to failure in the minimum cross-section of the specimens and the true stress-strain curves were calculated. Since these curves are influenced by necking, they do not represent the correct work-hardening of the material. Accordingly, finite element (FE) simulations of the tensile tests on the smooth axisymmetric specimens were conducted to determine the work-hardening curves to failure, using an optimization tool that interfaced with the nonlinear FE code and the experimental stress-strain curves as objectives. The microstructure of the alloy was characterized after the three processing steps by optical and scanning electron microscopy, and fractography was used to investigate the failure mechanisms.


Alloy Digest ◽  
2002 ◽  
Vol 51 (1) ◽  

Abstract Allegheny Ludlum Type 305 (S30500) stainless steel is used for applications requiring a low rate of work hardening during severe cold-forming operations such as deep drawing. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as heat treating and joining. Filing Code: SS-840. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1962 ◽  
Vol 11 (11) ◽  

Abstract Armco 18-9LW is a low-work-hardening stainless steel developed for severe cold heading, swaging and other cold forming applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-138. Producer or source: Armco Inc., Eastern Steel Division.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 700
Author(s):  
Maria Concetta Oddo ◽  
Giovanni Minafò ◽  
Lidia La Mendola

In recent years, the scientific community has focused its interest on innovative inorganic matrix composite materials, namely TRM (Textile Reinforced Mortar). This class of materials satisfies the need of retrofitting existing masonry buildings, by keeping the compatibility with the substrate. Different recent studies were addressed to improve the knowledge on their mechanical behaviour and some theoretical models were proposed for predicting the tensile response of TRM strips. However, this task is complex due to the heterogeneity of the constituent materials and the stress transfer mechanism developed between matrix and fabric through the interface in the cracked stage. This paper presents a state-of-the-art review on the existing constitutive models for the tensile behavior of TRM composites. Literature experimental results of tensile tests on TRM coupons are presented and compared with the most relevant analytical models proposed until now. Finally, a new experimental study is presented and its results are used to further verify the reliability of the literature expressions.


Author(s):  
Shaosen Ma ◽  
Guangping Huang ◽  
Khaled Obaia ◽  
Soon Won Moon ◽  
Wei Victor Liu

The objective of this study is to investigate the hysteresis loss of ultra-large off-the-road (OTR) tire rubber compounds based on typical operating conditions at mine sites. Cyclic tensile tests were conducted on tread and sidewall compounds at six strain levels ranging from 10% to 100%, eight strain rates from 10% to 500% s−1 and 14 rubber temperatures from −30°C to 100°C. The test results showed that a large strain level (e.g. 100%) increased the hysteresis loss of tire rubber compounds considerably. Hysteresis loss of tire rubber compounds increased with a rise of strain rates, and the increasing rates became greater at large strain levels (e.g. 100%). Moreover, a rise of rubber temperatures caused a decrease in hysteresis loss; however, the decrease became less significant when the rubber temperatures were above 10°C. Compared with tread compounds, sidewall compounds showed greater hysteresis loss values and more rapid increases in hysteresis loss with the rising strain rate.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 532
Author(s):  
A Jo ◽  
Myeong Jeong ◽  
Sang Lee ◽  
Young Moon ◽  
Sun Hwang

A multi-stage cold forging process was developed and complemented with finite element analysis (FEA) to manufacture a high-strength one-body input shaft with a long length body and no separate parts. FEA showed that the one-body input shaft was manufactured without any defects or fractures. Experiments, such as tensile, hardness, torsion, and fatigue tests, and microstructural characterization, were performed to compare the properties of the input shaft produced by the proposed method with those produced using the machining process. The ultimate tensile strength showed a 50% increase and the torque showed a 100 Nm increase, confirming that the input shaft manufactured using the proposed process is superior to that processed using the machining process. Thus, this study provides a proof-of-concept for the design and development of a multi-stage cold forging process to manufacture a one-body input shaft with improved mechanical properties and material recovery rate.


2021 ◽  
Vol 2 (3) ◽  

Cold forging is a high-speed forming technique used to shape metals at near room temperature. and it allows high-rate production of high strength metal-based products in a consistent and cost-effective manner. However, cold forming processes are characterized by complex material deformation dynamics which makes product quality control difficult to achieve. There is no well defined mathematical model that governs the interactions between a cold forming process, material properties, and final product quality. The goal of this work is to provide a review for the state of research in the field of using acoustic emission (AE) technology in monitoring cold forging process. The integration of AE with machine learning (ML) algorithms to monitor the quality is also reviewed and discussed. It is realized that this promising technology didn’t receive the deserving attention for its implementation in cold forging and that more work is needed.


2018 ◽  
Vol 185 ◽  
pp. 00002
Author(s):  
Shih-Hsien Lin ◽  
Un-Chin Chai ◽  
Gow-Yi Tzou ◽  
Dyi-Cheng Chen

Three are generalized simulation optimizations considering the forging force, the die stress, and the dual-goals in two-stage forging of micro/meso copper fastener. Constant shear friction between the dies and workpiece is assumed to perform multi-stage cold forging forming simulation analysis, and the Taguchi method with the finite element simulation has been used for mold-and-dies parameters design simulation optimizations considering the forging force, die stress, and dual-goals. The die stress optimization is used to explore the effects on effective stress, effective strain, velocity field, die stress, forging force, and shape of product. The influence rank to forging process of micro/meso copper fastener for three optimizations can be determined, and the optimal parameters assembly consider die stress can be obtained in this study. It is noted that the punch design innovation can reduce the forging force and die stress.


Author(s):  
Giovanni B. Broggiato ◽  
Luca Cortese

In experimental mechanics, the possibility of tracking on component surfaces the full-field stress and strain states during deformation can be utilized for many purposes such as formability limits determination, quantification of stress intensification factors, material characterization and so on. Concerning the last topic, an interesting application could be a direct identification of the elasto-plastic material response up to large deformation. It is well known, in fact, that with traditional measurement devices it is possible to retrieve the true equivalent stress versus true equivalent strain data from tensile tests only up to the onset of necking, where localization starts to occur. This work aims to show how from the knowledge of a tensile test full-field strain and of load data it will be possible to obtain the full-stress field as well as the complete material elasto-plastic behavior.


Sign in / Sign up

Export Citation Format

Share Document