scholarly journals Retraction Note to: Spatial distribution of mountain soil environment and traditional village landscape based on image simulation

2021 ◽  
Vol 14 (24) ◽  
Author(s):  
Jianjian Li ◽  
Pan Wei
2012 ◽  
Vol 518-523 ◽  
pp. 2806-2811
Author(s):  
Wen Juan Jia ◽  
Ying Yan ◽  
Ying Su ◽  
Ming Da Liu

To identify the concentration and spatial distribution of cadmium (Cd) in agricultural soils, 207 soil samples were collected from Chaoyang and analyzed based on pollution index methods and GIS. The concentration of Cd in the soils of Chaoyang ranged from 0.030 to 0.687 mg/kg, with an average concentration of 0.246 mg/kg. The evaluated results of Cd in agricultural soils of Chaoyang shows that the pollution excess rate is 2.90%, the total agricultural soil environment of Cd was still clean, but some areas were accumulated by Cd. The differences between two evaluated methods indicate that evaluated criteria had a direct impact on the evaluation results, compared to integrated pollution index, the Geoaccumulation index method was more accurate and objective.


2005 ◽  
Vol 71 (12) ◽  
pp. 8123-8131 ◽  
Author(s):  
Arnaud Dechesne ◽  
Céline Pallud ◽  
Franck Bertolla ◽  
Geneviève L. Grundmann

ABSTRACT Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell-to-cell contact, the probability of which depends on their spatial distribution. To quantitatively characterize the microscale distribution of an introduced bacterial population and its dynamics, a gfp-tagged derivative of Pseudomonas putida KT2440 was introduced by percolation in repacked soil columns. Initially, the introduced population was less widely spread at the microscale level than two model indigenous functional communities: the 2,4-dichlorophenoxyacetic acid degraders and the nitrifiers (each at 106 CFU g−1 soil). When the soil was percolated with a substrate metabolizable by P. putida or incubated for 1 month, the microscale distribution of introduced bacteria was modified towards a more widely dispersed distribution. The quantitative data indicate that the microscale spatial distribution of an introduced strain may strongly limit its contacts with the members of an indigenous bacterial community. This could constitute an explanation to the low number of indigenous transconjugants found most of time when a plasmid-donor strain is introduced into soil.


CATENA ◽  
2003 ◽  
Vol 51 (1) ◽  
pp. 61-79 ◽  
Author(s):  
J Smith ◽  
P van Oploo ◽  
H Marston ◽  
M.D Melville ◽  
B.C.T Macdonald

Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
Y. Ishida ◽  
H. Ishida ◽  
K. Kohra ◽  
H. Ichinose

IntroductionA simple and accurate technique to determine the Burgers vector of a dislocation has become feasible with the advent of HVEM. The conventional image vanishing technique(1) using Bragg conditions with the diffraction vector perpendicular to the Burgers vector suffers from various drawbacks; The dislocation image appears even when the g.b = 0 criterion is satisfied, if the edge component of the dislocation is large. On the other hand, the image disappears for certain high order diffractions even when g.b ≠ 0. Furthermore, the determination of the magnitude of the Burgers vector is not easy with the criterion. Recent image simulation technique is free from the ambiguities but require too many parameters for the computation. The weak-beam “fringe counting” technique investigated in the present study is immune from the problems. Even the magnitude of the Burgers vector is determined from the number of the terminating thickness fringes at the exit of the dislocation in wedge shaped foil surfaces.


Author(s):  
E. J. Kirkland

In a STEM an electron beam is focused into a small probe on the specimen. This probe is raster scanned across the specimen to form an image from the electrons transmitted through the specimen. The objective lens is positioned before the specimen instead of after the specimen as in a CTEM. Because the probe is focused and scanned before the specimen, accurate annular dark field (ADF) STEM image simulation is more difficult than CTEM simulation. Instead of an incident uniform plane wave, ADF-STEM simulation starts with a probe wavefunction focused at a specified position on the specimen. The wavefunction is then propagated through the specimen one atomic layer (or slice) at a time with Fresnel diffraction between slices using the multislice method. After passing through the specimen the wavefunction is diffracted onto the detector. The ADF signal for one position of the probe is formed by integrating all electrons scattered outside of an inner angle large compared with the objective aperture.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Sign in / Sign up

Export Citation Format

Share Document