Modelling and Analysis of Dual Material Gate Charge Plasma Based Vertical t-shaped TFET

Silicon ◽  
2021 ◽  
Author(s):  
Prabin Kumar Bera ◽  
Rajib Kar ◽  
Durbadal Mandal
2020 ◽  
Vol 126 (3) ◽  
Author(s):  
Ravi Ranjan ◽  
Nitesh Kashyap ◽  
Ashish Raman

2019 ◽  
Vol 9 (2) ◽  
pp. 291-297
Author(s):  
Hind Jaafar ◽  
Abdellah Aouaj ◽  
Ahmed Bouziane ◽  
Benjamin Iñiguez

Background: A novel Dual Material Gate Graded Channel and Dual Oxide Thickness Cylindrical Gate (DMG-GC-DOT) MOSFET is presented in this paper. Methods: Analytical model of drain current is developed using a quasi-two-dimensional cylindrical form of the Poisson equation and is expressed as a function of the surface potential, which is calculated using the expressions of the current density. Results: Comparison of the analytical results with 3D numerical simulations using Silvaco Atlas - TCAD software presents a good agreement from subthreshold to strong inversion regime and for different bias voltages. Conclusion: Two oxide thicknesses with different permittivity can effectively improve the subthreshold current of DMG-GC-DOT MOSFET.


Author(s):  
Juan Sebastian Cuellar ◽  
Dick Plettenburg ◽  
Amir A Zadpoor ◽  
Paul Breedveld ◽  
Gerwin Smit

Various upper-limb prostheses have been designed for 3D printing but only a few of them are based on bio-inspired design principles and many anatomical details are not typically incorporated even though 3D printing offers advantages that facilitate the application of such design principles. We therefore aimed to apply a bio-inspired approach to the design and fabrication of articulated fingers for a new type of 3D printed hand prosthesis that is body-powered and complies with basic user requirements. We first studied the biological structure of human fingers and their movement control mechanisms in order to devise the transmission and actuation system. A number of working principles were established and various simplifications were made to fabricate the hand prosthesis using a fused deposition modelling (FDM) 3D printer with dual material extrusion. We then evaluated the mechanical performance of the prosthetic device by measuring its ability to exert pinch forces and the energy dissipated during each operational cycle. We fabricated our prototypes using three polymeric materials including PLA, TPU, and Nylon. The total weight of the prosthesis was 92 g with a total material cost of 12 US dollars. The energy dissipated during each cycle was 0.380 Nm with a pinch force of ≈16 N corresponding to an input force of 100 N. The hand is actuated by a conventional pulling cable used in BP prostheses. It is connected to a shoulder strap at one end and to the coupling of the whiffle tree mechanism at the other end. The whiffle tree mechanism distributes the force to the four tendons, which bend all fingers simultaneously when pulled. The design described in this manuscript demonstrates several bio-inspired design features and is capable of performing different grasping patterns due to the adaptive grasping provided by the articulated fingers. The pinch force obtained is superior to other fully 3D printed body-powered hand prostheses, but still below that of conventional body powered hand prostheses. We present a 3D printed bio-inspired prosthetic hand that is body-powered and includes all of the following characteristics: adaptive grasping, articulated fingers, and minimized post-printing assembly. Additionally, the low cost and low weight make this prosthetic hand a worthy option mainly in locations where state-of-the-art prosthetic workshops are absent.


Sign in / Sign up

Export Citation Format

Share Document